Train_Identify/nvidia_ascend_engine/nvidia_engine/TrainStepTwoEngine/TrainStepTwoEngine.cpp

1 line
9.2 KiB
C++
Raw Normal View History

#include "TrainStepTwoEngine.h" #include <opencv2/opencv.hpp> #include "myutils.h" #include "myqueue.h" using namespace ai_matrix; TrainStepTwoEngine::TrainStepTwoEngine() {} TrainStepTwoEngine::~TrainStepTwoEngine() {} APP_ERROR TrainStepTwoEngine::Init() { bUseEngine_ = MyUtils::getins()->ChkIsHaveTarget("NUM"); if (!bUseEngine_) { LogWarn << "engineId_:" << engineId_ << " not use engine"; return APP_ERR_OK; } strPort0_ = engineName_ + "_" + std::to_string(engineId_) + "_0"; modelConfig_ = MyYaml::GetIns()->GetModelConfig("TrainStepTwoEngine"); //读取模型信息 APP_ERROR ret = ReadModelInfo(); if (ret != APP_ERR_OK) { LogError << "Failed to read model info, ret = " << ret; return ret; } ret = InitModel(); if (ret != APP_ERR_OK) { LogError << "Failed to read model info, ret = " << ret; return ret; } LogInfo << "AclTrainStepTwoEngine Init ok"; return APP_ERR_OK; } APP_ERROR TrainStepTwoEngine::InitModel() { modelinfo.yolov5ClearityModelParam.uiClassNum = class_num; modelinfo.yolov5ClearityModelParam.uiClearNum = clear_num; modelinfo.yolov5ClearityModelParam.uiDetSize = det_size; modelinfo.yolov5ClearityModelParam.fScoreThreshold = score_threshold; modelinfo.yolov5ClearityModelParam.fNmsThreshold = nms_threshold; modelinfo.modelCommonInfo.uiModelWidth = model_width; modelinfo.modelCommonInfo.uiModelHeight = model_height; modelinfo.modelCommonInfo.uiInputSize = input_size; modelinfo.modelCommonInfo.uiOutputSize = output_size; modelinfo.modelCommonInfo.uiChannel = INPUT_CHANNEL; modelinfo.modelCommonInfo.uiBatchSize = batch_size; modelinfo.modelCommonInfo.strInputBlobName = INPUT_BLOB_NAME; modelinfo.modelCommonInfo.strOutputBlobName = OUTPUT_BLOB_NAME; string strModelName = ""; int nRet = yolov5model.YoloV5ClearityInferenceInit(&modelinfo, strModelName, modelConfig_.strOmPath); if (nRet != 0) { LogInfo << "YoloV5ClassifyInferenceInit nRet:" << nRet; return APP_ERR_COMM_READ_FAIL; } return APP_ERR_OK; } APP_ERROR TrainStepTwoEngine::ReadModelInfo() { char szAbsPath[PATH_MAX]; // Get the absolute path of model file if (realpath(modelConfig_.strOmPath.c_str(), szAbsPath) == nullptr) { LogError << "Failed to get the real path of " << modelConfig_.strOmPath.c_str(); return APP_ERR_COMM_NO_EXIST; } // Check the validity of model path int iFolderExist = access(szAbsPath, R_OK); if (iFolderExist == -1) { LogError << "ModelPath " << szAbsPath << " doesn't exist or read failed!"; return APP_ERR_COMM_NO_EXIST; } //读取模型参数信息文件 Json::Value jvModelInfo; if (!MyUtils::getins()->ReadJsonInfo(jvModelInfo, modelConfig_.strModelInfoPath)) { LogError << "ModelInfoPath:" << modelConfig_.strModelInfoPath << " doesn't exist or read failed!"; return APP_ERR_COMM_NO_EXIST; } model_width = jvModelInfo["model_width"].asInt(); model_height = jvModelInfo["model_height"].asInt(); clear_num = jvModelInfo["clear"].isArray() ? jvModelInfo["clear"].size() : 0; class_num = jvModelInfo["class"].isArray() ? jvModelInfo["class"].size() : 0; input_size = GET_INPUT_SIZE(model_width, model_height); output_size = GET_OUTPUT_SIZE(model_width, model_height, clear_num, class_num); det_size = clear_num + class_num + 5; score_threshold = modelConfig_.fScoreThreshold; nms_threshold = modelConfig_.fNMSTreshold; return APP_ERR_OK; } APP_ERROR TrainStepTwoEngine::DeInit() { if (!bUseEngine_) { LogWarn << "engineId_:" << engineId_ << " not use engine"; return APP_ERR_OK; } yolov5model.YoloV5ClearityInferenceDeinit(); LogInfo << "TrainStepTwoEngine DeInit ok"; return APP_ERR_OK; } /** * push数据到队列队列满时则休眠一段时间再push * inParam : const std::string strPort push的端口 : const