Train_Identify/nvidia_ascend_engine/nvidia_engine/TrainStepTwoEngine/TrainStepTwoEngine.h

61 lines
1.7 KiB
C
Raw Normal View History

2024-01-23 02:46:26 +00:00
/**
*
* */
#ifndef TRAINSTEPTWOENGINE_H
#define TRAINSTEPTWOENGINE_H
#include "AppCommon.h"
#include "MyYaml.h"
#include "EngineBase.h"
#include "EngineFactory.h"
#include "yolov5_clearity_inference.h"
class TrainStepTwoEngine : public ai_matrix::EngineBase
{
public:
TrainStepTwoEngine();
~TrainStepTwoEngine();
APP_ERROR Init() override;
APP_ERROR DeInit() override;
APP_ERROR Process() override;
private:
//初始化识别模型
APP_ERROR InitModel();
//获取模型配置
APP_ERROR ReadModelInfo();
//push数据到队列队列满时则休眠一段时间再push
void PushData(const std::string &strPort, const std::shared_ptr<ProcessData> &pProcessData);
bool bUseEngine_;
std::string strPort0_;
ai_matrix::ModelConfig modelConfig_;
std::string strResultPath_;
bool bStepOneImgSaveFlag_;
YoloV5ClearityInference yolov5model;
const char* INPUT_BLOB_NAME = "images"; //输入层名称
const char* OUTPUT_BLOB_NAME = "output"; //输出层名称
unsigned int img_width = IMAGE_WIDTH;
unsigned int img_height = IMAGE_HEIGHT;
unsigned int model_width = STEP2_INPUT_W;
unsigned int model_height = STEP2_INPUT_H;
unsigned int clear_num = STEP2_CLEAR_NUM;
unsigned int class_num = STEP2_CLASS_NUM;
unsigned int input_size = STEP2_INPUT_SIZE;
unsigned int output_size = STEP2_OUTPUT_SIZE;
unsigned int det_size = STEP2_CLASS_NUM + STEP2_CLEAR_NUM + 5;
unsigned int batch_size = STEP2_BATCH_SIZE;
float score_threshold = STEP2_SCORE_THRESH;
float nms_threshold = STEP2_NMS_THRESH;
YoloV5ClearityModelInfo modelinfo;
};
ENGINE_REGIST(TrainStepTwoEngine)
#endif