Train_Identify/nvidia_ascend_engine/nvidia_engine/TrainStepOneEngine/TrainStepOneEngine.cpp

487 lines
20 KiB
C++
Raw Normal View History

2024-01-23 02:46:26 +00:00
#include "TrainStepOneEngine.h"
#include <opencv2/opencv.hpp>
#include "myutils.h"
#include "myqueue.h"
using namespace ai_matrix;
TrainStepOneEngine::TrainStepOneEngine() {}
TrainStepOneEngine::~TrainStepOneEngine() {}
APP_ERROR TrainStepOneEngine::Init()
{
bUseEngine_ = MyUtils::getins()->ChkIsHaveTarget("NUM");
if (!bUseEngine_)
{
LogWarn << "engineId_:" << engineId_ << " not use engine";
return APP_ERR_OK;
}
strPort0_ = engineName_ + "_" + std::to_string(engineId_) + "_0";
modelConfig_ = MyYaml::GetIns()->GetModelConfig("TrainStepOneEngine");
iSpaceMinRBXPer_ = MyYaml::GetIns()->GetIntValue("gc_space_minrbx_imgpercent");
// 读取模型信息
APP_ERROR ret = ReadModelInfo();
if (ret != APP_ERR_OK)
{
LogError << "Failed to read model info, ret = " << ret;
return ret;
}
ret = InitModel();
if (ret != APP_ERR_OK)
{
LogError << "Failed to read model info, ret = " << ret;
return ret;
}
// 获取几个摄像头识别车号;是否有单独识别平车的摄像头(即定检期摄像头是否识别平车)
std::map<int, ai_matrix::DataSourceConfig> mapUseDataSouceCfg = MyYaml::GetIns()->GetUseDataSourceConfig();
for (auto iter = mapUseDataSouceCfg.begin(); iter != mapUseDataSouceCfg.end(); iter++)
{
if (iter->second.strTarget.find("NUM") != std::string::npos)
{
LogDebug << "DataSource:" << iter->first << " deal NUM";
mapDataSourceCfg_[iter->first] = iter->second;
if (iter->second.strTarget.find("CHKDATE") != std::string::npos ||
iter->second.strTarget.find("FLAT") != std::string::npos)
{
LogDebug << "sourceid:" << iter->first << " Target:" << iter->second.strTarget;
mapSameSideFlatcarSid_[iter->first] = iter->first;
}
}
}
// 设置同侧识别平车摄像头信息
for (auto iter = mapDataSourceCfg_.begin(); iter != mapDataSourceCfg_.end(); iter++)
{
if (mapSameSideFlatcarSid_.find(iter->first) != mapSameSideFlatcarSid_.end())
{
continue;
}
for (auto iterFlat = mapSameSideFlatcarSid_.begin(); iterFlat != mapSameSideFlatcarSid_.end(); iterFlat++)
{
ai_matrix::DataSourceConfig dataSourceCfg = MyYaml::GetIns()->GetDataSourceConfigById(iterFlat->first);
if (dataSourceCfg.iLeftFirst == iter->second.iLeftFirst)
{
mapSameSideFlatcarSid_[iter->first] = iterFlat->first;
break;
}
}
}
LogInfo << "TrainStepOneEngine Init ok";
return APP_ERR_OK;
}
APP_ERROR TrainStepOneEngine::InitModel()
{
modelinfo.yolov5ClearityModelParam.uiClassNum = class_num;
modelinfo.yolov5ClearityModelParam.uiClearNum = clear_num;
modelinfo.yolov5ClearityModelParam.uiDetSize = det_size;
modelinfo.yolov5ClearityModelParam.fScoreThreshold = score_threshold;
modelinfo.yolov5ClearityModelParam.fNmsThreshold = nms_threshold;
modelinfo.modelCommonInfo.uiModelWidth = model_width;
modelinfo.modelCommonInfo.uiModelHeight = model_height;
modelinfo.modelCommonInfo.uiInputSize = input_size;
modelinfo.modelCommonInfo.uiOutputSize = output_size;
modelinfo.modelCommonInfo.uiChannel = INPUT_CHANNEL;
modelinfo.modelCommonInfo.uiBatchSize = batch_size;
modelinfo.modelCommonInfo.strInputBlobName = INPUT_BLOB_NAME;
modelinfo.modelCommonInfo.strOutputBlobName = OUTPUT_BLOB_NAME;
string strModelName = "";
int nRet = yolov5model.YoloV5ClearityInferenceInit(&modelinfo, strModelName, modelConfig_.strOmPath);
if (nRet != 0)
{
LogInfo << "YoloV5ClassifyInferenceInit nRet:" << nRet;
return APP_ERR_COMM_READ_FAIL;
}
return APP_ERR_OK;
}
APP_ERROR TrainStepOneEngine::ReadModelInfo()
{
char szAbsPath[PATH_MAX];
// Get the absolute path of model file
if (realpath(modelConfig_.strOmPath.c_str(), szAbsPath) == nullptr)
{
LogError << "Failed to get the real path of " << modelConfig_.strOmPath.c_str();
return APP_ERR_COMM_NO_EXIST;
}
// Check the validity of model path
int iFolderExist = access(szAbsPath, R_OK);
if (iFolderExist == -1)
{
LogError << "ModelPath " << szAbsPath << " doesn't exist or read failed!";
return APP_ERR_COMM_NO_EXIST;
}
//读取模型参数信息文件
Json::Value jvModelInfo;
if (!MyUtils::getins()->ReadJsonInfo(jvModelInfo, modelConfig_.strModelInfoPath))
{
LogError << "ModelInfoPath:" << modelConfig_.strModelInfoPath << " doesn't exist or read failed!";
return APP_ERR_COMM_NO_EXIST;
}
model_width = jvModelInfo["model_width"].asInt();
model_height = jvModelInfo["model_height"].asInt();
clear_num = jvModelInfo["clear"].isArray() ? jvModelInfo["clear"].size() : 0;
class_num = jvModelInfo["class"].isArray() ? jvModelInfo["class"].size() : 0;
input_size = GET_INPUT_SIZE(model_width, model_height);
output_size = GET_OUTPUT_SIZE(model_width, model_height, clear_num, class_num);
det_size = clear_num + class_num + 5;
score_threshold = modelConfig_.fScoreThreshold;
nms_threshold = modelConfig_.fNMSTreshold;
return APP_ERR_OK;
}
APP_ERROR TrainStepOneEngine::DeInit()
{
if (!bUseEngine_)
{
LogWarn << "engineId_:" << engineId_ << " not use engine";
return APP_ERR_OK;
}
yolov5model.YoloV5ClearityInferenceDeinit();
LogInfo << "TrainStepOneEngine DeInit ok";
return APP_ERR_OK;
}
/**
* push数据到队列push
* inParam : const std::string strPort push的端口
: const std::shared_ptr<ProcessData> &pProcessData push的数据
* outParam: N/A
* return : N/A
*/
void TrainStepOneEngine::PushData(const std::string &strPort, const std::shared_ptr<ProcessData> &pProcessData)
{
while (true)
{
int iRet = outputQueMap_[strPort]->push(std::static_pointer_cast<void>(pProcessData));
if (iRet != 0)
{
LogDebug << "sourceid:" << pProcessData->iDataSource << " frameid:" << pProcessData->iFrameId << " push fail iRet:" << iRet;
if (iRet == 2)
{
usleep(10000); // 10ms
continue;
}
}
break;
}
}
/**
*
* inParam : std::vector<stDetection> &vecRet :
: std::shared_ptr<ProcessData> pProcessData :
* outParam: N/A
* return : N/A
*/
void TrainStepOneEngine::FilterInvalidInfo(std::vector<stDetection> &vecRet, std::shared_ptr<ProcessData> &pProcessData)
{
ai_matrix::DataSourceConfig dataSourceCfg = mapDataSourceCfg_[pProcessData->iDataSource];
std::vector<stDetection> vecSpaceInfo;
for (auto it = vecRet.begin(); it != vecRet.end();)
{
LogDebug << "frameId:" << pProcessData->iFrameId
2024-01-23 02:46:26 +00:00
<< " bigclassid:" << it->class_id << " ltx:" << it->bbox[0] << " lty:" << it->bbox[1]
<< " rbx:" << it->bbox[2] << " rby:" << it->bbox[3];
// 根据配置文件中 设置的识别范围,过滤掉无效数据
if (!(it->bbox[0] >= dataSourceCfg.fIdentifyAreasLTX &&
it->bbox[1] >= dataSourceCfg.fIdentifyAreasLTY &&
it->bbox[2] <= dataSourceCfg.fIdentifyAreasRBX &&
it->bbox[3] <= dataSourceCfg.fIdentifyAreasRBY))
{
LogDebug << "frameId:" << pProcessData->iFrameId
<< " bigclassid:" << it->class_id << " 超出识别区域-识别区域:("
<< dataSourceCfg.fIdentifyAreasLTX << "," << dataSourceCfg.fIdentifyAreasLTY << "),("
<< dataSourceCfg.fIdentifyAreasRBX << "," << dataSourceCfg.fIdentifyAreasRBY << ")";
it = vecRet.erase(it);
continue;
}
// 如果设置了不识别车头,则去掉车头标记的大框
if (!MyYaml::GetIns()->GetBoolValue("gc_train_heard_detect") && it->class_id == TRAIN_HEAD)
{
LogDebug << "frameId:" << pProcessData->iFrameId << " 过滤掉车头编号";
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
// 去除车头车尾的间隔信息
if(pProcessData->nMonitorState == MONITOR_MODEL_TRAIN_HEAD )
{
if(it->class_id != TRAIN_HEAD)
2024-01-23 02:46:26 +00:00
{
LogDebug << " 帧号:" << pProcessData->iFrameId
<< " 大类:" << it->class_id << " 识别于车头位置,无效!";
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
}
if (pProcessData->nMonitorState == MONITOR_MODEL_TRAIN_TAIL
&& ((it->class_id >= 9 && it->class_id <= 17 && it->class_id != 15) || it->class_id == 18))
2024-01-23 02:46:26 +00:00
{
LogDebug << " frameId:" << pProcessData->iFrameId
<< " bigclassid:" << it->class_id
<<" 识别于车尾部分,无效!";
it = vecRet.erase(it);
continue;
2024-01-23 02:46:26 +00:00
}
// 按大框高度剔除远股道识别的信息
int iClassHeight = it->bbox[3] - it->bbox[1];
if (dataSourceCfg.mapClassMinH.find(it->class_id) != dataSourceCfg.mapClassMinH.end() &&
iClassHeight < dataSourceCfg.mapClassMinH[it->class_id])
{
LogDebug << " frameId:" << pProcessData->iFrameId
2024-01-23 02:46:26 +00:00
<< " bigclassid:" << it->class_id << " iClassHeight:" << iClassHeight
<< " minH:" << dataSourceCfg.mapClassMinH[it->class_id] << " 过滤疑似远股道识别";
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
//如果有平车摄像头则平车摄像头只识别大框类别16。
auto iterFlat = mapSameSideFlatcarSid_.find(pProcessData->iDataSource);
if (iterFlat != mapSameSideFlatcarSid_.end() && pProcessData->iDataSource == iterFlat->second)
{
if (it->class_id != 1 && it->class_id != 6)
{
LogDebug << " frameId:" << pProcessData->iFrameId << " flat camera only deal 1 or 6";
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
}
//剔除高度大于宽的车号大框
if (((it->class_id >= 2 && it->class_id <= 6) || it->class_id == J_TRAIN_NUM || it->class_id == W_TRAIN_NUM) &&
(it->bbox[3] - it->bbox[1]) > (it->bbox[2] - it->bbox[0]))
{
LogWarn << " frameId:" << pProcessData->iFrameId
<< " bigclassid:" << it->class_id << " 过滤 高度大于宽度的车号";
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
if (((it->class_id >= 2 && it->class_id <= 6) || it->class_id == J_TRAIN_NUM || it->class_id == W_TRAIN_NUM) &&
(it->bbox[3] - it->bbox[1]) < MyYaml::GetIns()->GetIntValue("gc_num_frame_height"))
{
LogWarn << "疑似误识别到远股道车号,帧号:" << pProcessData->iFrameId
<< "大框高度:" << (it->bbox[3] - it->bbox[1]);
it = vecRet.erase(it);
continue;
}
if ((it->class_id == 1 || it->class_id == TRAIN_PRO)
&& (it->bbox[3] - it->bbox[1]) < MyYaml::GetIns()->GetIntValue("gc_pro_frame_height")) {
LogWarn << "疑似误识别到远股道属性,帧号:" << pProcessData->iFrameId
<< "大框高度:" << (it->bbox[3] - it->bbox[1]);
it = vecRet.erase(it);
continue;
}
if ((it->class_id == 9 || it->class_id == C_TRAIN_SPACE)
&& (it->bbox[2] - it->bbox[0]) > MyYaml::GetIns()->GetIntValue("gc_c_space_frame_width")) {
LogWarn << "疑似误识别到敞车间隔,帧号:" << pProcessData->iFrameId
<< "大框宽度:" << (it->bbox[2] - it->bbox[0]);
it = vecRet.erase(it);
continue;
}
//补连塔的相机比较近,间隔基本在画面底部,因此当间隔比较靠画面上时过滤掉。
if ((it->class_id >= 9 && it->class_id <= 17 && it->class_id != 15) || it->class_id == U_TRAIN_SPACE)
{
if (it->bbox[3] < (pProcessData->iHeight * iSpaceMinRBXPer_ / 100))
{
LogWarn << " frameId:" << pProcessData->iFrameId
<< " bigclassid:" << it->class_id << " 过滤间隔过于靠下的间隔信息 fRBY:" << it->bbox[3];
2024-01-23 02:46:26 +00:00
it = vecRet.erase(it);
continue;
}
vecSpaceInfo.emplace_back(*it);
}
++it;
}
//主摄像头1帧如果只识别2个大框如果非平车的车号和属性场景则必有间隔框
if (pProcessData->iDataSource == 0 && vecRet.size() == 2)
{
int iHeight0 = vecRet[0].bbox[1] / 2 + vecRet[0].bbox[3] / 2;
int iHeight1 = vecRet[1].bbox[1] / 2 + vecRet[1].bbox[3] / 2;
int iCenterY = pProcessData->iHeight / 2;
if (iHeight0 < iCenterY && iHeight1 < iCenterY) //非平车
{
if (!((vecRet[0].class_id >= 9 && vecRet[0].class_id <= 17 && vecRet[0].class_id != 15) || vecRet[0].class_id == U_TRAIN_SPACE) &&
!((vecRet[1].class_id >= 9 && vecRet[1].class_id <= 17 && vecRet[1].class_id != 15) || vecRet[1].class_id == U_TRAIN_SPACE))
2024-01-23 02:46:26 +00:00
{
LogDebug << " frameId:" << pProcessData->iFrameId << " no space";
2024-01-23 02:46:26 +00:00
vecRet.clear();
}
}
}
// //K车间隙大导致识别对面股道信息的过滤。 获取间隔最宽的大框跟该大框X轴有重合的过滤掉。
// if (vecSpaceInfo.size() > 0 && vecRet.size() > 1)
// {
// std::sort(vecRet.begin(), vecRet.end(), [](stDetection &a, stDetection &b){return (a.bbox[2]-a.bbox[0]) > (b.bbox[2]-b.bbox[0]);});
// auto iterMaxWSpace = vecSpaceInfo.begin();
// if (iterMaxWSpace->class_id == K_TRAIN_SPACE)
// {
// for (auto it = vecRet.begin(); it != vecRet.end();)
// {
// if ((it->class_id <= 6 || it->class_id == W_TRAIN_NUM) && !(it->bbox[2] <= iterMaxWSpace->bbox[0] || it->bbox[0] >= iterMaxWSpace->bbox[2]))
// {
// LogError << "sourceid:" << pProcessData->iDataSource << " frameId:" << pProcessData->iFrameId
// << " classid:" << it->class_id << " overlap x";
// it = vecRet.erase(it);
// continue;
// }
// ++it;
// }
// }
// }
}
/**
*
* inParam : PostSubData &postSubData :
* outParam: PostSubData &postSubData :
* return : N/A
*/
void TrainStepOneEngine::SetTargetType(PostSubData &postSubData)
{
if (postSubData.iBigClassId == TRAIN_HEAD)
{
postSubData.iTargetType = HEAD;
}
else if (postSubData.iBigClassId == TRAIN_PRO)
{
postSubData.iTargetType = PRO;
}
else if ((postSubData.iBigClassId >= 2 && postSubData.iBigClassId <= 6) ||
postSubData.iBigClassId == J_TRAIN_NUM ||
postSubData.iBigClassId == W_TRAIN_NUM)
{
postSubData.iTargetType = NUM;
}
else if (postSubData.iBigClassId >= 9 && postSubData.iBigClassId <= 17 && postSubData.iBigClassId != 15)
{
postSubData.iTargetType = TRAINSPACE;
}
else if (postSubData.iBigClassId == U_TRAIN_SPACE)
{
postSubData.iTargetType = SPACE;
}
}
APP_ERROR TrainStepOneEngine::Process()
{
if (!bUseEngine_)
{
LogWarn << "engineId_:" << engineId_ << " not use engine";
return APP_ERR_OK;
}
int iRet = APP_ERR_OK;
while (!isStop_)
{
std::shared_ptr<void> pVoidData0 = nullptr;
inputQueMap_[strPort0_]->pop(pVoidData0);
if (nullptr == pVoidData0)
{
usleep(1000); //1ms
continue;
}
std::shared_ptr<ProcessData> pProcessData = std::static_pointer_cast<ProcessData>(pVoidData0);
//组织输出数据
std::shared_ptr<PostData> pPostData = std::make_shared<PostData>();
pPostData->iModelType = MODELTYPE_NUM;
pPostData->nMonitorState = pProcessData->nMonitorState; //来车检测的四个分类
//获取图片
if (pProcessData->iStatus == TRAINSTATUS_RUN || pProcessData->bIsEnd)
{
if (pProcessData->pData != nullptr && pProcessData->iSize != 0)
{
cv::Mat img(pProcessData->iHeight, pProcessData->iWidth, CV_8UC3, static_cast<uint8_t *>(pProcessData->pData.get())); //BGR
//进行推理
std::vector<stDetection> res;
//auto start = std::chrono::system_clock::now(); //计时开始
yolov5model.YoloV5ClearityInferenceModel(img, res);
//auto end = std::chrono::system_clock::now();
//LogInfo << "nopr1 inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms";
//过滤无效信息
FilterInvalidInfo(res, pProcessData);
MyUtils::getins()->GetMaxScoreResult(res);
//整理推理结果
//根据非极大值抑制的结果标注相关信息(画框,文字信息等)
//res.size()为每张图片上的识别到的对象数目
for (size_t j = 0; j < res.size(); j++)
{
/*
[0:; 1:; 2:(,); 3:; 4:; 5:; 6:
7:; 8:; 9:; 10:; 11:; 12:; 13:;
14:; 15:; 16: ; 17:; 18:]
*/
if (res[j].class_id < 0 || res[j].class_id > 18)
{
continue;
}
SingleData singledata;
// singledata.iLine = -1;
singledata.iClassId = res[j].class_id;
singledata.fScore = res[j].class_conf;
// singledata.iAnchorId = -1;
singledata.fLTX = res[j].bbox[0];
singledata.fLTY = res[j].bbox[1];
singledata.fRBX = res[j].bbox[2];
singledata.fRBY = res[j].bbox[3];
singledata.fClear = res[j].clear_id;
PostSubData postSubData;
postSubData.iBigClassId = res[j].class_id;
postSubData.vecSingleData.emplace_back(singledata);
postSubData.step1Location.fLTX = res[j].bbox[0];
postSubData.step1Location.fLTY = res[j].bbox[1];
postSubData.step1Location.fRBX = res[j].bbox[2];
postSubData.step1Location.fRBY = res[j].bbox[3];
SetTargetType(postSubData);
pPostData->vecPostSubData.emplace_back(postSubData);
// LogDebug << "数据源:" << pProcessData->iDataSource << " 帧:" << pProcessData->iFrameId
// << " --iClassId:" << singledata.iClassId << " iLine:" << singledata.iLine << " confidence=" << singledata.fScore
// << " lx=" << singledata.fLTX << " ly=" << singledata.fLTY << " rx=" << singledata.fRBX << " ry=" << singledata.fRBY
// << " clear:" << singledata.fClear;
2024-01-23 02:46:26 +00:00
}
}
}
//及时释放内存
if (pProcessData->pData != nullptr)
{
pProcessData->pData = nullptr;
pProcessData->iSize = 0;
}
//push端口0第1步推理
pProcessData->pVoidData = std::static_pointer_cast<void>(pPostData);
PushData(strPort0_, pProcessData);
}
return APP_ERR_OK;
}