#include "InferenceModelEngine.h" using namespace std; using namespace ai_matrix; InferenceModelEngine::InferenceModelEngine() {} InferenceModelEngine::~InferenceModelEngine() {} APP_ERROR InferenceModelEngine::Init() { strPort0_ = engineName_ + "_" + std::to_string(engineId_) + "_0"; //创建模型推理CUDA流 inference_model_stream_ = new cudaStream_t; CUDA_CHECK(cudaStreamCreate(inference_model_stream_)); gLogger_ = new Logger; //相关资源分配 buffers_[0] = nullptr; buffers_[1] = nullptr; CUDA_CHECK(cudaMalloc((void**)&buffers_[0], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); //输入资源分配 CUDA_CHECK(cudaMalloc((void**)&buffers_[1], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); //输出资源分配 LogInfo << "engineId_:" << engineId_ << " InferenceModelEngine Init ok"; return APP_ERR_OK; } APP_ERROR InferenceModelEngine::DeInit() { CUDA_CHECK(cudaStreamDestroy(*inference_model_stream_)); delete inference_model_stream_; inference_model_stream_ = nullptr; //释放模型推理CUDA流 CUDA_CHECK(cudaFree(buffers_[0])); //释放输入数据设备端内存 CUDA_CHECK(cudaFree(buffers_[1])); //释放输出数据设备端内存 //析构engine引擎资源 context_->destroy(); //析构绘话 engine_->destroy(); //析构TensorRT引擎 runtime_->destroy(); //析构运行时环境 delete gLogger_; gLogger_ = nullptr; LogInfo << "engineId_:" << engineId_ << " InferenceModelEngine DeInit ok"; return APP_ERR_OK; } APP_ERROR InferenceModelEngine::Process() { cudaSetDevice(DEVICE); //设置GPU //wts及engine模型名称 std::string wts_name = MyYaml::GetIns()->GetStringValue("yolov5_wts_name"); std::string engine_name = MyYaml::GetIns()->GetStringValue("yolov5_model_name"); bool is_p6 = false; //默认不是P6模型 /********************************************************************************** gw width_multiple系数: width_multiple控制网络的宽度。 gd depth_multiple系数: depth_multiple控制网络的深度 N模型: gd = 0.33;gw = 0.25; S模型: gd = 0.33;gw = 0.50; M模型: gd = 0.67;gw = 0.75; L模型: gd = 1.0;gw = 1.0; X模型: gd = 1.33;gw = 1.25; **********************************************************************************/ float gd = 0.67, gw = 0.75; //默认使用M模型 //序列化引擎 //直接使用API创建一个模型,并将其序列化为流 编译成TensorRT引擎engine文件后无需再次调用,调用依次生成engine即可 #if 0 if (!wts_name.empty()) { IHostMemory* modelStream{ nullptr }; APIToModel(*gLogger_, BATCH_SIZE, &modelStream, is_p6, gd, gw, wts_name); assert(modelStream != nullptr); std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "could not open plan output file" << std::endl; return -1; } p.write(reinterpret_cast(modelStream->data()), modelStream->size()); modelStream->destroy(); } #endif //反序列化模型并运行推理 std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { LogInfo << "read " << engine_name << " error!" << std::endl; exit(0); } //创建tensorRT流对象trtModelStream,这个就跟文件流中的ifstream类似的 //trtModelStream是一块内存区域,用于保存序列化的plan文件 char *trtModelStream = nullptr; size_t size = 0; file.seekg(0, file.end); //将指针移动至距离文件末尾0处的位置 size = file.tellg(); //获得当前字符的位置 file.seekg(0, file.beg); //将指针移动至距离文件开头0处的位置 trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); //将序列化engine模型(数据及数据大小)读入trtModelStream file.close(); //1.设置运行时环境 //runtime_ = new IRuntime; runtime_ = createInferRuntime(*gLogger_); //创建运行时环境IRuntime对象,传入gLogger用于打印信息 assert(runtime_ != nullptr); //2.生成反序列化引擎 //engine = new ICudaEngine; engine_ = runtime_->deserializeCudaEngine(trtModelStream, size); //反序列化引擎engine(根据trtModelStream反序列化) assert(engine_ != nullptr); //3.创建上下文环境 //context = new IExecutionContext; context_ = engine_->createExecutionContext(); //创建上下文环境,主要用于inference函数中启动cuda核 assert(context_ != nullptr); delete[] trtModelStream; //析构trtModelStream assert(engine_->getNbBindings() == 2); //获取绑定的输入输入 const int inputIndex = engine_->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine_->getBindingIndex(OUTPUT_BLOB_NAME); std::cout<<"inputIndex: "< pVoidData0 = nullptr; inputQueMap_[strPort0_]->pop(pVoidData0); if (nullptr == pVoidData0) { usleep(1*1000); //n ms continue; } // LogInfo << "receive from ImagePreprocessEngine's data success!"; // std::cout<<"receive from ImagePreprocessEngine's data success!"< pImagePreprocessData = std::static_pointer_cast(pVoidData0); //将图像预处理数据拷贝到buffers_[0] #ifdef CUDA_MEMCPY_TIME_CONSUMING_TEST auto cuda_memcpy_start = std::chrono::system_clock::now(); //计时开始 CUDA_CHECK(cudaMemcpyAsync(buffers_[0], static_cast(pImagePreprocessData->pData.get()), pImagePreprocessData->iSize, cudaMemcpyDeviceToDevice,*inference_model_stream_)); auto cuda_memcpy_end = std::chrono::system_clock::now(); //计时结束 std::cout<< "InferenceModelEngine cuda memcpy data size is: "<iSize<(cuda_memcpy_end - cuda_memcpy_start).count() << "ms" << std::endl; #else CUDA_CHECK(cudaMemcpyAsync(buffers_[0], static_cast(pImagePreprocessData->pData.get()), pImagePreprocessData->iSize, cudaMemcpyDeviceToDevice,*inference_model_stream_)); #endif //构造推理结果数据 void* pInferenceModelBuffer = nullptr; unsigned int pInferenceModelBuffer_Size = BATCH_SIZE * OUTPUT_SIZE; pInferenceModelBuffer = new float[pInferenceModelBuffer_Size]; void* pSrcRGBBuffer = nullptr; unsigned int pSrcRGBBuffer_Size = pImagePreprocessData->iSrcSize; pSrcRGBBuffer = new uint8_t[pSrcRGBBuffer_Size]; memcpy(pSrcRGBBuffer, pImagePreprocessData->pSrcData.get(), pSrcRGBBuffer_Size); std::shared_ptr pInferenceModelData = std::make_shared(); #ifdef INFERENCE_MODEL_TIME_CONSUMING_TEST auto start = std::chrono::system_clock::now(); //计时开始 doInference(*context_, *inference_model_stream_, (void**)buffers_, (float*)pInferenceModelBuffer, BATCH_SIZE); //context为推理的上下文环境,stream为注册流(用于异步推理时进行同步),buffers为传入的图像数据,pInferenceModelBuffer为推理的结果 auto end = std::chrono::system_clock::now(); std::cout << "inference time: " << std::chrono::duration_cast(end - start).count() << "ms" << std::endl; #else doInference(*context_, *inference_model_stream_, (void**)buffers_, (float*)pInferenceModelBuffer, BATCH_SIZE); //context为推理的上下文环境,stream为注册流(用于异步推理时进行同步),buffers为传入的图像数据,pInferenceModelBuffer为推理的结果 #endif //组织数据 pInferenceModelData->iDataSource = engineId_; pInferenceModelData->iSize = pInferenceModelBuffer_Size; pInferenceModelData->pData.reset(pInferenceModelBuffer, [](void* data){if(data){delete[] data; data = nullptr;}}); //智能指针管理内存 pInferenceModelData->iSrcSize = pSrcRGBBuffer_Size; pInferenceModelData->pSrcData.reset(pSrcRGBBuffer, [](void* data){if(data){delete[] data; data = nullptr;}}); //智能指针管理内存 pInferenceModelData->i64TimeStamp = pImagePreprocessData->i64TimeStamp; #if 1 //推理结果送入下一引擎 iRet = outputQueMap_[strPort0_]->push(std::static_pointer_cast(pInferenceModelData)); if (iRet != APP_ERR_OK){ LogError << "push info error"; // std::cerr<<"push the inference model data failed..."<(r, 1); } //构建普通引擎(例:yolov5s,yolov5m...) ICudaEngine* InferenceModelEngine::build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, nvinfer1::DataType dt, float& gd, float& gw, std::string& wts_name) { INetworkDefinition* network = builder->createNetworkV2(0U); // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); assert(data); std::map weightMap = loadWeights(wts_name); /* ------ yolov5 backbone------ */ auto conv0 = convBlock(network, weightMap, *data, get_width(64, gw), 6, 2, 1, "model.0"); assert(conv0); auto conv1 = convBlock(network, weightMap, *conv0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1"); auto bottleneck_CSP2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2"); auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3"); auto bottleneck_csp4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(6, gd), true, 1, 0.5, "model.4"); auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5"); auto bottleneck_csp6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6"); auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.7"); auto bottleneck_csp8 = C3(network, weightMap, *conv7->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), true, 1, 0.5, "model.8"); auto spp9 = SPPF(network, weightMap, *bottleneck_csp8->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, "model.9"); /* ------ yolov5 head ------ */ auto conv10 = convBlock(network, weightMap, *spp9->getOutput(0), get_width(512, gw), 1, 1, 1, "model.10"); auto upsample11 = network->addResize(*conv10->getOutput(0)); assert(upsample11); upsample11->setResizeMode(ResizeMode::kNEAREST); upsample11->setOutputDimensions(bottleneck_csp6->getOutput(0)->getDimensions()); ITensor* inputTensors12[] = { upsample11->getOutput(0), bottleneck_csp6->getOutput(0) }; auto cat12 = network->addConcatenation(inputTensors12, 2); auto bottleneck_csp13 = C3(network, weightMap, *cat12->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.13"); auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), get_width(256, gw), 1, 1, 1, "model.14"); auto upsample15 = network->addResize(*conv14->getOutput(0)); assert(upsample15); upsample15->setResizeMode(ResizeMode::kNEAREST); upsample15->setOutputDimensions(bottleneck_csp4->getOutput(0)->getDimensions()); ITensor* inputTensors16[] = { upsample15->getOutput(0), bottleneck_csp4->getOutput(0) }; auto cat16 = network->addConcatenation(inputTensors16, 2); auto bottleneck_csp17 = C3(network, weightMap, *cat16->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.17"); /* ------ detect ------ */ IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]); auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), get_width(256, gw), 3, 2, 1, "model.18"); ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) }; auto cat19 = network->addConcatenation(inputTensors19, 2); auto bottleneck_csp20 = C3(network, weightMap, *cat19->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.20"); IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]); auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), get_width(512, gw), 3, 2, 1, "model.21"); ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) }; auto cat22 = network->addConcatenation(inputTensors22, 2); auto bottleneck_csp23 = C3(network, weightMap, *cat22->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.23"); IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]); auto yolo = addYoLoLayer(network, weightMap, "model.24", std::vector{det0, det1, det2}); yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME); network->markOutput(*yolo->getOutput(0)); // Build engine builder->setMaxBatchSize(maxBatchSize); config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB #if defined(USE_FP16) config->setFlag(BuilderFlag::kFP16); #elif defined(USE_INT8) std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl; assert(builder->platformHasFastInt8()); config->setFlag(BuilderFlag::kINT8); Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME); config->setInt8Calibrator(calibrator); #endif std::cout << "Building engine, please wait for a while..." << std::endl; ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); std::cout << "Build engine successfully!" << std::endl; // Don't need the network any more network->destroy(); // Release host memory for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return engine; } //构建p6引擎(例:yolov5s6,yolov5m6...) ICudaEngine* InferenceModelEngine::build_engine_p6(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, nvinfer1::DataType dt, float& gd, float& gw, std::string& wts_name) { INetworkDefinition* network = builder->createNetworkV2(0U); // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); assert(data); std::map weightMap = loadWeights(wts_name); /* ------ yolov5 backbone------ */ auto conv0 = convBlock(network, weightMap, *data, get_width(64, gw), 6, 2, 1, "model.0"); auto conv1 = convBlock(network, weightMap, *conv0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1"); auto c3_2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2"); auto conv3 = convBlock(network, weightMap, *c3_2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3"); auto c3_4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(6, gd), true, 1, 0.5, "model.4"); auto conv5 = convBlock(network, weightMap, *c3_4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5"); auto c3_6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6"); auto conv7 = convBlock(network, weightMap, *c3_6->getOutput(0), get_width(768, gw), 3, 2, 1, "model.7"); auto c3_8 = C3(network, weightMap, *conv7->getOutput(0), get_width(768, gw), get_width(768, gw), get_depth(3, gd), true, 1, 0.5, "model.8"); auto conv9 = convBlock(network, weightMap, *c3_8->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.9"); auto c3_10 = C3(network, weightMap, *conv9->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), true, 1, 0.5, "model.10"); auto sppf11 = SPPF(network, weightMap, *c3_10->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, "model.11"); /* ------ yolov5 head ------ */ auto conv12 = convBlock(network, weightMap, *sppf11->getOutput(0), get_width(768, gw), 1, 1, 1, "model.12"); auto upsample13 = network->addResize(*conv12->getOutput(0)); assert(upsample13); upsample13->setResizeMode(ResizeMode::kNEAREST); upsample13->setOutputDimensions(c3_8->getOutput(0)->getDimensions()); ITensor* inputTensors14[] = { upsample13->getOutput(0), c3_8->getOutput(0) }; auto cat14 = network->addConcatenation(inputTensors14, 2); auto c3_15 = C3(network, weightMap, *cat14->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.15"); auto conv16 = convBlock(network, weightMap, *c3_15->getOutput(0), get_width(512, gw), 1, 1, 1, "model.16"); auto upsample17 = network->addResize(*conv16->getOutput(0)); assert(upsample17); upsample17->setResizeMode(ResizeMode::kNEAREST); upsample17->setOutputDimensions(c3_6->getOutput(0)->getDimensions()); ITensor* inputTensors18[] = { upsample17->getOutput(0), c3_6->getOutput(0) }; auto cat18 = network->addConcatenation(inputTensors18, 2); auto c3_19 = C3(network, weightMap, *cat18->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.19"); auto conv20 = convBlock(network, weightMap, *c3_19->getOutput(0), get_width(256, gw), 1, 1, 1, "model.20"); auto upsample21 = network->addResize(*conv20->getOutput(0)); assert(upsample21); upsample21->setResizeMode(ResizeMode::kNEAREST); upsample21->setOutputDimensions(c3_4->getOutput(0)->getDimensions()); ITensor* inputTensors21[] = { upsample21->getOutput(0), c3_4->getOutput(0) }; auto cat22 = network->addConcatenation(inputTensors21, 2); auto c3_23 = C3(network, weightMap, *cat22->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.23"); auto conv24 = convBlock(network, weightMap, *c3_23->getOutput(0), get_width(256, gw), 3, 2, 1, "model.24"); ITensor* inputTensors25[] = { conv24->getOutput(0), conv20->getOutput(0) }; auto cat25 = network->addConcatenation(inputTensors25, 2); auto c3_26 = C3(network, weightMap, *cat25->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.26"); auto conv27 = convBlock(network, weightMap, *c3_26->getOutput(0), get_width(512, gw), 3, 2, 1, "model.27"); ITensor* inputTensors28[] = { conv27->getOutput(0), conv16->getOutput(0) }; auto cat28 = network->addConcatenation(inputTensors28, 2); auto c3_29 = C3(network, weightMap, *cat28->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.29"); auto conv30 = convBlock(network, weightMap, *c3_29->getOutput(0), get_width(768, gw), 3, 2, 1, "model.30"); ITensor* inputTensors31[] = { conv30->getOutput(0), conv12->getOutput(0) }; auto cat31 = network->addConcatenation(inputTensors31, 2); auto c3_32 = C3(network, weightMap, *cat31->getOutput(0), get_width(2048, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.32"); /* ------ detect ------ */ IConvolutionLayer* det0 = network->addConvolutionNd(*c3_23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.0.weight"], weightMap["model.33.m.0.bias"]); IConvolutionLayer* det1 = network->addConvolutionNd(*c3_26->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.1.weight"], weightMap["model.33.m.1.bias"]); IConvolutionLayer* det2 = network->addConvolutionNd(*c3_29->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.2.weight"], weightMap["model.33.m.2.bias"]); IConvolutionLayer* det3 = network->addConvolutionNd(*c3_32->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.3.weight"], weightMap["model.33.m.3.bias"]); auto yolo = addYoLoLayer(network, weightMap, "model.33", std::vector{det0, det1, det2, det3}); yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME); network->markOutput(*yolo->getOutput(0)); // Build engine builder->setMaxBatchSize(maxBatchSize); config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB #if defined(USE_FP16) config->setFlag(BuilderFlag::kFP16); #elif defined(USE_INT8) std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl; assert(builder->platformHasFastInt8()); config->setFlag(BuilderFlag::kINT8); Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME); config->setInt8Calibrator(calibrator); #endif std::cout << "Building engine, please wait for a while..." << std::endl; ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); std::cout << "Build engine successfully!" << std::endl; // Don't need the network any more network->destroy(); // Release host memory for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return engine; } //转换模型 void InferenceModelEngine::APIToModel(Logger gLogger, unsigned int maxBatchSize, IHostMemory** modelStream, bool& is_p6, float& gd, float& gw, std::string& wts_name) { // Create builder IBuilder* builder = createInferBuilder(gLogger); //创建builder(要传入gLogger) IBuilderConfig* config = builder->createBuilderConfig(); //创建builderconfig // 创建模型来填充网络,然后设置输出并创建一个引擎 // Create model to populate the network, then set the outputs and create an engine ICudaEngine *engine = nullptr; if (is_p6) { engine = build_engine_p6(maxBatchSize, builder, config, nvinfer1::DataType::kFLOAT, gd, gw, wts_name); } else { engine = build_engine(maxBatchSize, builder, config, nvinfer1::DataType::kFLOAT, gd, gw, wts_name); } assert(engine != nullptr); // Serialize the engine //序列化引擎生成模型流 (*modelStream) = engine->serialize(); // Close everything down //释放相关资源 engine->destroy(); builder->destroy(); config->destroy(); } //执行推理 void InferenceModelEngine::doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* output, int batchSize) { // infer on the batch asynchronously, and DMA output back to host context.enqueue(batchSize, buffers, stream, nullptr); //执行异步推理(调用context->enqueueV2即可执行异步推理,如果用同步推理的话,可以调用context->executeV2) CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); //把推理后的结果从GPU上拷贝到CPU上 cudaStreamSynchronize(stream); //同步之前创建的cuda流,原因很简单,直接使用的context->enqueueV2函数是异步推理,因此需要把cuda流同步一下 }