1 line
9.2 KiB
C++
1 line
9.2 KiB
C++
#include "TrainStepTwoEngine.h"
|
||
#include <opencv2/opencv.hpp>
|
||
#include "myutils.h"
|
||
#include "myqueue.h"
|
||
|
||
using namespace ai_matrix;
|
||
|
||
TrainStepTwoEngine::TrainStepTwoEngine() {}
|
||
|
||
TrainStepTwoEngine::~TrainStepTwoEngine() {}
|
||
|
||
APP_ERROR TrainStepTwoEngine::Init()
|
||
{
|
||
bUseEngine_ = MyUtils::getins()->ChkIsHaveTarget("NUM");
|
||
if (!bUseEngine_)
|
||
{
|
||
LogWarn << "engineId_:" << engineId_ << " not use engine";
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
strPort0_ = engineName_ + "_" + std::to_string(engineId_) + "_0";
|
||
modelConfig_ = MyYaml::GetIns()->GetModelConfig("TrainStepTwoEngine");
|
||
|
||
//读取模型信息
|
||
APP_ERROR ret = ReadModelInfo();
|
||
if (ret != APP_ERR_OK)
|
||
{
|
||
LogError << "Failed to read model info, ret = " << ret;
|
||
return ret;
|
||
}
|
||
ret = InitModel();
|
||
if (ret != APP_ERR_OK)
|
||
{
|
||
LogError << "Failed to read model info, ret = " << ret;
|
||
return ret;
|
||
}
|
||
|
||
LogInfo << "AclTrainStepTwoEngine Init ok";
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
APP_ERROR TrainStepTwoEngine::InitModel()
|
||
{
|
||
|
||
modelinfo.yolov5ClearityModelParam.uiClassNum = class_num;
|
||
modelinfo.yolov5ClearityModelParam.uiClearNum = clear_num;
|
||
modelinfo.yolov5ClearityModelParam.uiDetSize = det_size;
|
||
modelinfo.yolov5ClearityModelParam.fScoreThreshold = score_threshold;
|
||
modelinfo.yolov5ClearityModelParam.fNmsThreshold = nms_threshold;
|
||
|
||
modelinfo.modelCommonInfo.uiModelWidth = model_width;
|
||
modelinfo.modelCommonInfo.uiModelHeight = model_height;
|
||
modelinfo.modelCommonInfo.uiInputSize = input_size;
|
||
modelinfo.modelCommonInfo.uiOutputSize = output_size;
|
||
modelinfo.modelCommonInfo.uiChannel = INPUT_CHANNEL;
|
||
modelinfo.modelCommonInfo.uiBatchSize = batch_size;
|
||
modelinfo.modelCommonInfo.strInputBlobName = INPUT_BLOB_NAME;
|
||
modelinfo.modelCommonInfo.strOutputBlobName = OUTPUT_BLOB_NAME;
|
||
|
||
string strModelName = "";
|
||
|
||
int nRet = yolov5model.YoloV5ClearityInferenceInit(&modelinfo, strModelName, modelConfig_.strOmPath);
|
||
if (nRet != 0)
|
||
{
|
||
LogInfo << "YoloV5ClassifyInferenceInit nRet:" << nRet;
|
||
return APP_ERR_COMM_READ_FAIL;
|
||
}
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
APP_ERROR TrainStepTwoEngine::ReadModelInfo()
|
||
{
|
||
char szAbsPath[PATH_MAX];
|
||
// Get the absolute path of model file
|
||
if (realpath(modelConfig_.strOmPath.c_str(), szAbsPath) == nullptr)
|
||
{
|
||
LogError << "Failed to get the real path of " << modelConfig_.strOmPath.c_str();
|
||
return APP_ERR_COMM_NO_EXIST;
|
||
}
|
||
|
||
// Check the validity of model path
|
||
int iFolderExist = access(szAbsPath, R_OK);
|
||
if (iFolderExist == -1)
|
||
{
|
||
LogError << "ModelPath " << szAbsPath << " doesn't exist or read failed!";
|
||
return APP_ERR_COMM_NO_EXIST;
|
||
}
|
||
|
||
//读取模型参数信息文件
|
||
Json::Value jvModelInfo;
|
||
if (!MyUtils::getins()->ReadJsonInfo(jvModelInfo, modelConfig_.strModelInfoPath))
|
||
{
|
||
LogError << "ModelInfoPath:" << modelConfig_.strModelInfoPath << " doesn't exist or read failed!";
|
||
return APP_ERR_COMM_NO_EXIST;
|
||
}
|
||
|
||
model_width = jvModelInfo["model_width"].asInt();
|
||
model_height = jvModelInfo["model_height"].asInt();
|
||
clear_num = jvModelInfo["clear"].isArray() ? jvModelInfo["clear"].size() : 0;
|
||
class_num = jvModelInfo["class"].isArray() ? jvModelInfo["class"].size() : 0;
|
||
input_size = GET_INPUT_SIZE(model_width, model_height);
|
||
output_size = GET_OUTPUT_SIZE(model_width, model_height, clear_num, class_num);
|
||
det_size = clear_num + class_num + 5;
|
||
score_threshold = modelConfig_.fScoreThreshold;
|
||
nms_threshold = modelConfig_.fNMSTreshold;
|
||
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
APP_ERROR TrainStepTwoEngine::DeInit()
|
||
{
|
||
if (!bUseEngine_)
|
||
{
|
||
LogWarn << "engineId_:" << engineId_ << " not use engine";
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
yolov5model.YoloV5ClearityInferenceDeinit();
|
||
LogInfo << "TrainStepTwoEngine DeInit ok";
|
||
return APP_ERR_OK;
|
||
}
|
||
|
||
/**
|
||
* push数据到队列,队列满时则休眠一段时间再push
|
||
* inParam : const std::string strPort push的端口
|
||
: const std::shared_ptr<ProcessData> &pProcessData push的数据
|
||
* outParam: N/A
|
||
* return : N/A
|
||
*/
|
||
void TrainStepTwoEngine::PushData(const std::string &strPort, const std::shared_ptr<ProcessData> &pProcessData)
|
||
{
|
||
while (true)
|
||
{
|
||
int iRet = outputQueMap_[strPort]->push(std::static_pointer_cast<void>(pProcessData));
|
||
if (iRet != 0)
|
||
{
|
||
LogDebug << "sourceid:" << pProcessData->iDataSource << " frameid:" << pProcessData->iFrameId << " push fail iRet:" << iRet;
|
||
if (iRet == 2)
|
||
{
|
||
usleep(10000); // 10ms
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
APP_ERROR TrainStepTwoEngine::Process()
|
||
{
|
||
if (!bUseEngine_)
|
||
{
|
||
LogWarn << "engineId_:" << engineId_ << " not use engine";
|
||
return APP_ERR_OK;
|
||
}
|
||
int iRet = APP_ERR_OK;
|
||
|
||
while (!isStop_)
|
||
{
|
||
std::shared_ptr<void> pVoidData0 = nullptr;
|
||
inputQueMap_[strPort0_]->pop(pVoidData0);
|
||
if (nullptr == pVoidData0)
|
||
{
|
||
usleep(1000); //1ms
|
||
continue;
|
||
}
|
||
|
||
std::shared_ptr<ProcessData> pProcessData = std::static_pointer_cast<ProcessData>(pVoidData0);
|
||
//组织输出数据
|
||
std::shared_ptr<PostData> pPostData = std::make_shared<PostData>();
|
||
pPostData->iModelType = MODELTYPE_NUM;
|
||
|
||
//获取图片
|
||
if (pProcessData->iStatus == TRAINSTATUS_RUN || pProcessData->bIsEnd)
|
||
{
|
||
if (pProcessData->pData != nullptr && pProcessData->iSize != 0)
|
||
{
|
||
std::shared_ptr<PostData> ppostbuff = std::static_pointer_cast<PostData>(pProcessData->pVoidData);
|
||
cv::Mat img(pProcessData->iHeight, pProcessData->iWidth, CV_8UC3, static_cast<uint8_t *>(pProcessData->pData.get())); //RGB
|
||
|
||
for(int i = 0; i< ppostbuff->vecPostSubData.size(); i++)
|
||
{
|
||
PostSubData postsubdata = ppostbuff->vecPostSubData[i];
|
||
if (postsubdata.iTargetType != NUM && postsubdata.iTargetType != PRO && postsubdata.iTargetType != HEAD)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
cv::Rect step2_rect(cv::Point(postsubdata.step1Location.fLTX, postsubdata.step1Location.fLTY), cv::Point(postsubdata.step1Location.fRBX, postsubdata.step1Location.fRBY));
|
||
cv::Mat step2_image = img(step2_rect).clone();
|
||
|
||
//进行推理
|
||
std::vector<stDetection> res;
|
||
auto start = std::chrono::system_clock::now(); // 计时开始
|
||
yolov5model.YoloV5ClearityInferenceModel(step2_image, res);
|
||
auto end = std::chrono::system_clock::now();
|
||
// LogInfo << "nopr2 inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms";
|
||
|
||
PostSubData postSubDataNew;
|
||
postSubDataNew.iTargetType = postsubdata.iTargetType;
|
||
postSubDataNew.iBigClassId = postsubdata.iBigClassId;
|
||
postSubDataNew.iCarXH = postsubdata.iCarXH;
|
||
postSubDataNew.step1Location = postsubdata.step1Location;
|
||
//整理推理结果
|
||
//根据非极大值抑制的结果标注相关信息(画框,文字信息等)
|
||
//res.size()为每张图片上的识别到的对象数目
|
||
for (size_t j = 0; j < res.size(); j++)
|
||
{
|
||
SingleData singledata;
|
||
singledata.iLine = res[j].clear_id;
|
||
// singledata.iLine = -1;
|
||
singledata.iClassId = res[j].class_id;
|
||
singledata.fScore = res[j].class_conf;
|
||
// singledata.iAnchorId = -1;
|
||
singledata.fLTX = res[j].bbox[0];
|
||
singledata.fLTY = res[j].bbox[1];
|
||
singledata.fRBX = res[j].bbox[2];
|
||
singledata.fRBY = res[j].bbox[3];
|
||
singledata.fClear = res[j].clear_id;
|
||
|
||
MyUtils::getins()->Step2ResetLocation(singledata, 1.0, pProcessData, postSubDataNew.step1Location);
|
||
|
||
postSubDataNew.vecSingleData.emplace_back(singledata);
|
||
|
||
// LogDebug << "sourceid:" << pProcessData->iDataSource << " step2 after frameId:" << pProcessData->iFrameId
|
||
// << " --iClassId:" << singledata.iClassId << " iLine:" << singledata.iLine << " confidence=" << singledata.fScore
|
||
// << " lx=" << singledata.fLTX << " ly=" << singledata.fLTY << " rx=" << singledata.fRBX << " ry=" << singledata.fRBY;
|
||
}
|
||
pPostData->vecPostSubData.emplace_back(postSubDataNew);
|
||
}
|
||
}
|
||
}
|
||
|
||
//及时释放内存
|
||
if (pProcessData->pData != nullptr)
|
||
{
|
||
pProcessData->pData = nullptr;
|
||
pProcessData->iSize = 0;
|
||
}
|
||
|
||
// push端口0,第1步推理
|
||
pProcessData->pVoidData = std::static_pointer_cast<void>(pPostData);
|
||
PushData(strPort0_, pProcessData);
|
||
}
|
||
return APP_ERR_OK;
|
||
}
|
||
|