Train_Identify_arm/config.yaml.bak

166 lines
5.0 KiB
YAML
Raw Normal View History

init_deviceid: "ALL" #例: 0; 0,1; 2,3; ALL
# 基础控制参数
base:
# 股道名称
track_name: "1"
# 测试模式
test_model: false
# Api 监听端口
api_port: 7070
# 是否上传识别结果
up_result: false
# 是否启用socket-server
use_socket_server: false
# 日志文件目录
log_path: "./logs"
# 识别结果目录
result_path: "./result"
# 调试结果目录
debug_result_path: "./debug_result"
# 最优识别目录
best_result_path: "./best_result"
# 结果存储天数
result_save_days: 2
# 日志参数
log:
# 输出日志级别[DEBUG, INFO, WARN, ERROR, FATAL]
out_level: "DEBUG"
# 保存日志级别
save_level: "DEBUG"
#识别数据来源参数配置
data_source:
#url: "rtsp://admin:sgt12345@10.27.119.13:554/h264/ch1/main/av_stream"
url: "./vedio/buertai2.mp4"
# 跳帧数
skip_interval: 3
# 识别目标
target: "NUM"
# 行驶方向 0-自动识别 1-向左 2-向右 (与“首位信息”成对存在,形成例如向左就编号在前,向右就属性在前的对应)
direction: 0
# 0-向左编号在前 1-向左属性在前 (向右行驶的情况2-向右编号在前 3-向右属性在前)
left_first: 0
# (向左行驶的情况0-向左编号在前 1-向左属性在前) 2-向右编号在前 3-向右属性在前
right_first: 3
# (ltx,lty,rbx,rby)
identify_areas: "120, 0, 1800, 1080"
# 大框的最小高度(为屏蔽远股道识别到的信息)
classid_minheight: "1:90, 2:120, 3:120, 9:240, 10:240, 18:120"
# 识别参数
identify:
# 硬件解码
hardware_decode: true
# 运行方式
run_mode: "always" #[always; command]
# 是否开启动态检测
need_move_detect_flag: true
# 识别方向 [LEFT,RIGHT,ALL]
identify_direction: "LEFT"
# 大框帧跨度(比一个大框从出现到消失的跨度稍大一点, 跟跳帧有关系)
partition_frame_span: 20
# 大框帧跨度的位置像素差异
split_frame_span_px: 200
# 每帧大框位置差异最小值 (持续小于此值,则可能停车)
chkstop_px: 15
# 持续X次续位置差异小于chkstop_px则判断为停车。
chkstop_count: 10
# 过滤最小大框高度(不需要的话就写个很小的值)
num_frame_height: 150
pro_frame_height: 120
# 过滤最大框宽度(不需要的话就写个很大的值)
space_frame_width: 500
# 是否识别车头
train_heard_detect: true
# 选优 0-频率优先 1-长度优先
select_best_mode: 0
# 保存图片质量1~100 越高越清晰)
save_pic_quality: 50
#是否实时推流-用于直播
#gc_push_actual_flag: false
# 模型参数
model:
# 来车检测
MoveEngine:
path: "./model/step0/step0.engine"
model_info_path: "./model/step0/move_modelinfo.txt"
score_threshold: 0.9
nms_threshold: 0.3
# 关键区域识别
TrainStepOneEngine:
path: "./model/step1/step1.engine"
model_info_path: "./model/step1/train_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 字符识别
TrainStepTwoEngine:
path: "./model/step2/step2.engine"
model_info_path: "./model/step2/train_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# 定检期关键区域识别
ChkDateStepOneEngine:
path: "./model/chkDate_step1/step1.engine"
model_info_path: "./model/chkDate_step1/chkdate_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 定检期字符识别
ChkDateStepTwoEngine:
path: "./model/chkDate_step2/step2.engine"
model_info_path: "./model/chkDate_step2/chkdate_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# 集装箱关键区域识别
StepOneContainerEngine:
path: "./model/container_step1/con1.engine"
model_info_path: "./model/container_step1/container_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 集装箱字符识别
StepTwoContainerEngine:
path: "./model/container_step2/con2.engine"
model_info_path: "./model/container_step2/container_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# http 接口
http_client:
# 服务器IP
http_ip: 192.168.2.108
# 通讯端口
http_port: 20004
# 获取接口授权地址
token_path: "/api/blade-auth/oauth/token"
# 识别结果上传地址
up_result_path: "/api/train-carriage/identification/rfid-save"
# 设备状态上传地址
device_status_url: "/api/blade-train/deviceInfo/save"
# 接口用户名
username: "guest_01"
# 接口密码
password: "d55b0f642e817eea24725d2f2a31dd08"
# 上传图片的地址
image_srv: "http://192.168.0.121:9010/"
# websocket_server 的服务端参数
wsocket_server:
port: 7071
max_queue_len: 10
#sftp用户名、密码、地址
ftp:
type: "ftp" #可选 ftp 或 sftp
ip: "192.168.2.138"
port: 21 # ftp默认21 sftp默认22
username: "nvidia"
password: "nvidia"
image_path: ""
quit_time: 10 #无上传任务延迟XXX秒断开FTP连接
gc_space_minrbx_imgpercent: 0 #间隔框最低点不应小于画面某个高度值(该值为画面百分比) [主要为屏蔽远股道间隔框若不需要屏蔽则配置为0]