gc_init_deviceid: "ALL" #例: 0; 0,1; 2,3; ALL #识别数据来源参数配置 gc_data_source: "camera" #[camera, images] camera: #url: "rtsp://admin:sgt12345@10.27.119.13:554/h264/ch1/main/av_stream" # url: "./videos/km70.mp4" url: "./videos/06-29_96.mp4" skipInterval: 3 target: "NUM" use: true direction: 0 #行驶方向 0-自动识别 1-向左 2-向右 (与“首位信息”成对存在,形成例如向左就编号在前,向右就属性在前的对应) left_first: 0 # 0-向左编号在前 1-向左属性在前 (向右行驶的情况:2-向右编号在前 3-向右属性在前) right_first: 3 # (向左行驶的情况:0-向左编号在前 1-向左属性在前) 2-向右编号在前 3-向右属性在前 identify_areas: "120, 0, 1800, 1080" #(ltx,lty,rbx,rby) classid_minheight: "1:90, 2:120, 3:120, 9:240, 10:240, 18:120" #大框的最小高度(为屏蔽远股道识别到的信息) images: images_0: url: "./images" skipInterval: 5 target: "NUM,PRO,CONTAINER_T" use: true direction: 0 #行驶方向 0-自动识别 1-向左 2-向右 (与“首位信息”成对存在,形成例如向左就编号在前,向右就属性在前的对应) left_first: 0 # 0-向左编号在前 1-向左属性在前 (向右行驶的情况:2-向右编号在前 3-向右属性在前) right_first: 3 # (向左行驶的情况:0-向左编号在前 1-向左属性在前) 2-向右编号在前 3-向右属性在前 identify_areas: "50, 10, 1850, 1080" #(ltx,lty,rbx,rby) #是否采集数据 gc_collect_data_flag: false gc_collect_data_savepath: "./collectdata/" #运行式 gc_run_mode: "always" #[always; command] #是否开启动态检测 gc_need_move_detect_flag: true #是否实时推流-用于直播 gc_push_actual_flag: false gc_log_level: "DEBUG" #[DEBUG, INFO, WARN, ERROR, FATAL] gc_log_logfile: "./logs/log.txt" gc_log_logfile_bakpath: "./logs" #微服务地址 gc_service_address: 0.0.0.0:9002 #授权参数 gc_bind_hardware: false #是否绑定小站,true-绑定,false-不绑定 gc_check_register: false #是否检查授权,true-检查,false-不检查 atlas_poundno: "5" #工作站编号 gc_username: "admin" gc_password: "matrixai@1234" #选优 0-频率优先 1-长度优先 gc_select_best_mode: 0 #识别结果存储目录 gc_result_path: "./result" gc_result_path_for_test: "./pic" gc_best_path: "./result/best" #模型参数,只考虑敞车 model: MoveEngine: #动态检测 # om_path: "./model/step0/step0.FP16.engine" om_path: "./model/step0/step0.engine" modelinfo_path: "./model/step0/retina_move_modelinfo.txt" model_type: "retina" #(retina, yolov5) score_threshold: 0.9 nms_threshold: 0.3 TrainStepOneEngine: #关键区域识别 om_path: "./model/step1/step1.engine" modelinfo_path: "./model/step1/yolov5_train_step1_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.6 nms_threshold: 0.3 TrainStepTwoEngine: #字符识别 # om_path: "./model/step2/step2.engine" om_path: "./model/step2/step2.engine" modelinfo_path: "./model/step2/yolov5_train_step2_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.7 nms_threshold: 0.3 ChkDateStepOneEngine: #定检期关键区域识别 om_path: "./model/chkDate_step1/step1.engine" modelinfo_path: "./model/chkDate_step1/yolov5_chkdate_step1_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.6 nms_threshold: 0.3 ChkDateStepTwoEngine: #定检期字符识别 om_path: "./model/chkDate_step2/step2.engine" modelinfo_path: "./model/chkDate_step2/yolov5_chkdate_step2_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.7 nms_threshold: 0.3 StepOneContainerEngine: #集装箱关键区域识别 om_path: "./model/container_step1/con1.engine" modelinfo_path: "./model/container_step1/yolov5_container_step1_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.6 nms_threshold: 0.3 StepTwoContainerEngine: #顶部集装箱字符识别 om_path: "./model/container_step2/con2.engine" modelinfo_path: "./model/container_step2/yolov5_container_step2_modelinfo.txt" model_type: "yolov5" #(retina, yolov5) score_threshold: 0.7 nms_threshold: 0.3 gc_http_open: 0 # gc_http_url: "http://192.168.2.211:20004/api/train-carriage/identification/video-save" # gc_gettoken_url: "http://192.168.2.211:20004/api/blade-auth/oauth/token" # gc_image_srv: "http://192.168.2.211:9010/" username: "" password: "" gc_http_url: "http://192.168.2.121:8081" gc_gettoken_url: "http://192.168.0.121:20004/api/blade-auth/oauth/token" gc_image_srv: "http://192.168.0.121:9010/" gc_device_status_open: 0 gc_device_status_url: "http://192.168.2.211:20004/api/blade-train/deviceInfo/save" rfid_ip: "10.27.200.39" #socket_server 的服务端参数 socket_server_open: 0 socket_server_port: 7000 socket_server_queue_len: 10 #sftp用户名、密码、地址 gc_ftp_open: 0 gc_ftp_type: "ftp" #可选 ftp 或 sftp gc_ftp_ip: "192.168.2.138" gc_ftp_port: 21 # ftp默认21 sftp默认22 gc_ftp_username: "nvidia" gc_ftp_password: "nvidia" gc_ftp_image_path: "" gc_ftp_quit_time: 10 #无上传任务延迟XXX秒断开FTP连接 gc_minio_open: 0 gc_minio_url: "http://192.168.2.115:9000" gc_minio_accesskey: "J4SiNTqzt5Ur8ukC" gc_minio_secretkey: "zILttfdSpgylhATgV8K3cSqyLlflY60X" gc_minio_path: "nzz/" # mysql 相关 gc_mysql_open: 0 gc_mysql_table: "train_income_intf" gc_mysql_charset: "gbk" gc_mysql_host: "192.168.2.137" gc_mysql_user: "root" gc_mysql_passwd: "123456" gc_mysql_db: "test1" gc_mysql_port: "http://192.168.2.115:9000" gc_push_direction: 2 #(1:识别向左行驶的列车,2:识别向右行驶的列车,0:识别双方向。 注:如果方向不对,服务器会正常识别只是不推送给web) gc_space_minrbx_imgpercent: 0 #间隔框最低点不应小于画面某个高度值(该值为画面百分比) [主要为屏蔽远股道间隔框,若不需要屏蔽则配置为0] #车厢划分相关 partition_frame_span: 20 #大框帧跨度(比一个大框从出现到消失的跨度稍大一点, 跟跳帧有关系) gc_split_frame_span_px: 200 #大框帧跨度的位置像素差异 #停车判断相关 gc_chkstop_px: 15 #连续三帧位置差异小于15px,则可能停车 gc_chkstop_count: 10 #持续10次续三帧位置差异小于15px,则判断为停车。 #远股道 gc_save_pic_quality: 50 gc_load_delay: 10 gc_hardware_decode: true # 过滤最小大框高度(不需要的话就写个很小的值) gc_num_frame_height: 150 gc_pro_frame_height: 120 # 过滤最大框宽度(不需要的话就写个很大的值) gc_c_space_frame_width: 500 # 是否识别车头 gc_train_heard_detect: true # 识别结果保存天数 gc_days_for_result_expire_folder: 3