#include "StepOneContainerEngine.h" #include #include "myutils.h" #include "myqueue.h" using namespace ai_matrix; StepOneContainerEngine::StepOneContainerEngine() {} StepOneContainerEngine::~StepOneContainerEngine() {} APP_ERROR StepOneContainerEngine::Init() { bUseEngine_ = MyUtils::getins()->ChkIsHaveTarget("CONTAINER"); if (!bUseEngine_) { LogWarn << "engineId_:" << engineId_ << " not use engine"; return APP_ERR_OK; } strPort0_ = engineName_ + "_" + std::to_string(engineId_) + "_0"; modelConfig_ = MyYaml::GetIns()->GetModelConfig("StepOneContainerEngine"); //读取模型信息 APP_ERROR ret = ReadModelInfo(); if (ret != APP_ERR_OK) { LogError << "Failed to read model info, ret = " << ret; return ret; } ret = InitModel(); if (ret != APP_ERR_OK) { LogError << "Failed to read model info, ret = " << ret; return ret; } LogInfo << "AclStepOneContainerEngine Init ok"; return APP_ERR_OK; } APP_ERROR StepOneContainerEngine::InitModel() { modelinfo.yolov5ClearityModelParam.uiClassNum = class_num; modelinfo.yolov5ClearityModelParam.uiClearNum = clear_num; modelinfo.yolov5ClearityModelParam.uiDetSize = det_size; modelinfo.yolov5ClearityModelParam.fScoreThreshold = score_threshold; modelinfo.yolov5ClearityModelParam.fNmsThreshold = nms_threshold; modelinfo.modelCommonInfo.uiModelWidth = model_width; modelinfo.modelCommonInfo.uiModelHeight = model_height; modelinfo.modelCommonInfo.uiInputSize = input_size; modelinfo.modelCommonInfo.uiOutputSize = output_size; modelinfo.modelCommonInfo.uiChannel = INPUT_CHANNEL; modelinfo.modelCommonInfo.uiBatchSize = batch_size; modelinfo.modelCommonInfo.strInputBlobName = INPUT_BLOB_NAME; modelinfo.modelCommonInfo.strOutputBlobName = OUTPUT_BLOB_NAME; string strModelName = ""; int nRet = yolov5model.YoloV5ClearityInferenceInit(&modelinfo, strModelName, modelConfig_.strOmPath); if (nRet != 0) { LogInfo << "YoloV5ClassifyInferenceInit nRet:" << nRet; return APP_ERR_COMM_READ_FAIL; } return APP_ERR_OK; } APP_ERROR StepOneContainerEngine::ReadModelInfo() { char szAbsPath[PATH_MAX]; // Get the absolute path of model file if (realpath(modelConfig_.strOmPath.c_str(), szAbsPath) == nullptr) { LogError << "Failed to get the real path of " << modelConfig_.strOmPath.c_str(); return APP_ERR_COMM_NO_EXIST; } // Check the validity of model path int iFolderExist = access(szAbsPath, R_OK); if (iFolderExist == -1) { LogError << "ModelPath " << szAbsPath << " doesn't exist or read failed!"; return APP_ERR_COMM_NO_EXIST; } //读取模型参数信息文件 Json::Value jvModelInfo; if (!MyUtils::getins()->ReadJsonInfo(jvModelInfo, modelConfig_.strModelInfoPath)) { LogError << "ModelInfoPath:" << modelConfig_.strModelInfoPath << " doesn't exist or read failed!"; return APP_ERR_COMM_NO_EXIST; } model_width = jvModelInfo["model_width"].asInt(); model_height = jvModelInfo["model_height"].asInt(); clear_num = jvModelInfo["clear"].isArray() ? jvModelInfo["clear"].size() : 0; class_num = jvModelInfo["class"].isArray() ? jvModelInfo["class"].size() : 0; input_size = GET_INPUT_SIZE(model_width, model_height); output_size = GET_OUTPUT_SIZE(model_width, model_height, clear_num, class_num); det_size = clear_num + class_num + 5; score_threshold = modelConfig_.fScoreThreshold; nms_threshold = modelConfig_.fNMSTreshold; return APP_ERR_OK; } APP_ERROR StepOneContainerEngine::DeInit() { if (!bUseEngine_) { LogWarn << "engineId_:" << engineId_ << " not use engine"; return APP_ERR_OK; } yolov5model.YoloV5ClearityInferenceDeinit(); LogInfo << "StepOneContainerEngine DeInit ok"; return APP_ERR_OK; } /** * push数据到队列,队列满时则休眠一段时间再push。 * inParam : const std::string strPort push的端口 : const std::shared_ptr &pProcessData push的数据 * outParam: N/A * return : N/A */ void StepOneContainerEngine::PushData(const std::string &strPort, const std::shared_ptr &pProcessData) { while (true) { int iRet = outputQueMap_[strPort]->push(std::static_pointer_cast(pProcessData)); if (iRet != 0) { LogDebug << "sourceid:" << pProcessData->iDataSource << " frameid:" << pProcessData->iFrameId << " push fail iRet:" << iRet; if (iRet == 2) { usleep(10000); // 10ms continue; } } break; } } /** * 过滤无效信息 * inParam : std::vector &vecRet :识别结果数据 : std::shared_ptr pProcessData :帧信息数据 * outParam: N/A * return : N/A */ void StepOneContainerEngine::FilterInvalidInfo(std::vector &vecRet, std::shared_ptr &pProcessData) { ai_matrix::DataSourceConfig dataSourceCfg = MyYaml::GetIns()->GetDataSourceConfigById(pProcessData->iDataSource); for (auto it = vecRet.begin(); it != vecRet.end();) { LogDebug << "sourceid:" << pProcessData->iDataSource << " frameId:" << pProcessData->iFrameId << " bigclassid:" << it->class_id << " ltx:" << it->bbox[0] << " lty:" << it->bbox[1] << " rbx:" << it->bbox[2] << " rby:" << it->bbox[3]; if (!(it->bbox[0] >= dataSourceCfg.fIdentifyAreasLTX && it->bbox[1] >= dataSourceCfg.fIdentifyAreasLTY && it->bbox[2] <= dataSourceCfg.fIdentifyAreasRBX && it->bbox[3] <= dataSourceCfg.fIdentifyAreasRBY)) { LogWarn << "sourceid:" << pProcessData->iDataSource << " frameId:" << pProcessData->iFrameId << " bigclassid:" << it->class_id << " container invalid areas"; it = vecRet.erase(it); continue; } ++it; } } APP_ERROR StepOneContainerEngine::Process() { if (!bUseEngine_) { LogWarn << "engineId_:" << engineId_ << " not use engine"; return APP_ERR_OK; } int iRet = APP_ERR_OK; while (!isStop_) { std::shared_ptr pVoidData0 = nullptr; inputQueMap_[strPort0_]->pop(pVoidData0); if (nullptr == pVoidData0) { usleep(1000); //1ms continue; } std::shared_ptr pProcessData = std::static_pointer_cast(pVoidData0); //组织输出数据 std::shared_ptr pPostData = std::make_shared(); pPostData->iModelType = MODELTYPE_CONTAINER; //获取图片 if (pProcessData->iStatus == TRAINSTATUS_RUN || pProcessData->bIsEnd) { if (pProcessData->pData != nullptr && pProcessData->iSize != 0) { cv::Mat img(pProcessData->iHeight, pProcessData->iWidth, CV_8UC3, static_cast(pProcessData->pData.get())); //RGB //进行推理 std::vector res; auto start = std::chrono::system_clock::now(); // 计时开始 yolov5model.YoloV5ClearityInferenceModel(img, res); auto end = std::chrono::system_clock::now(); LogInfo << "cont1 inference time: " << std::chrono::duration_cast(end - start).count() << "ms"; //过滤无效信息 FilterInvalidInfo(res, pProcessData); //整理推理结果 //根据非极大值抑制的结果标注相关信息(画框,文字信息等) //res.size()为每张图片上的识别到的对象数目 for (size_t j = 0; j < res.size(); j++) { /* 非集装箱大框不处理 【0:集装箱; 1:反向集装箱; 2:顶部敞车间隔; 3:顶部平车间隔; 4:顶部罐车间隔; 5:顶部棚车间隔; 6:顶部混合车间隔】 */ if (res[j].class_id < 0 || res[j].class_id > 6) { continue; } SingleData singledata; // singledata.iLine = -1; singledata.iClassId = res[j].class_id; singledata.fScore = res[j].class_conf; // singledata.iAnchorId = -1; singledata.fLTX = res[j].bbox[0]; singledata.fLTY = res[j].bbox[1]; singledata.fRBX = res[j].bbox[2]; singledata.fRBY = res[j].bbox[3]; singledata.fClear = res[j].clear_id; PostSubData postSubData; postSubData.iBigClassId = res[j].class_id; postSubData.vecSingleData.emplace_back(singledata); postSubData.step1Location.fLTX = res[j].bbox[0]; postSubData.step1Location.fLTY = res[j].bbox[1]; postSubData.step1Location.fRBX = res[j].bbox[2]; postSubData.step1Location.fRBY = res[j].bbox[3]; if (postSubData.iBigClassId == 0 || postSubData.iBigClassId == 1) { postSubData.iTargetType = CONTAINER; } else if (postSubData.iBigClassId >= 2 && postSubData.iBigClassId <= 6) { postSubData.iTargetType = TOPSPACE; } pPostData->vecPostSubData.emplace_back(postSubData); LogDebug << "sourceid:" << pProcessData->iDataSource << " frameId:" << pProcessData->iFrameId << " --iClassId:" << singledata.iClassId << " iLine:" << singledata.iLine << " confidence=" << singledata.fScore << " lx=" << singledata.fLTX << " ly=" << singledata.fLTY << " rx=" << singledata.fRBX << " ry=" << singledata.fRBY << " clear:" << singledata.fClear; } } } //及时释放内存 if (pProcessData->pData != nullptr) { pProcessData->pData = nullptr; pProcessData->iSize = 0; } //push端口0,第1步推理 pProcessData->pVoidData = std::static_pointer_cast(pPostData); PushData(strPort0_, pProcessData); } return APP_ERR_OK; }