Train_Identify_arm/config.yaml.bak

166 lines
5.0 KiB
YAML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

init_deviceid: "ALL" #例: 0; 0,1; 2,3; ALL
# 基础控制参数
base:
# 股道名称
track_name: "1"
# 测试模式
test_model: false
# Api 监听端口
api_port: 7070
# 是否上传识别结果
up_result: false
# 是否启用socket-server
use_socket_server: false
# 日志文件目录
log_path: "./logs"
# 识别结果目录
result_path: "./result"
# 调试结果目录
debug_result_path: "./debug_result"
# 最优识别目录
best_result_path: "./best_result"
# 结果存储天数
result_save_days: 2
# 日志参数
log:
# 输出日志级别[DEBUG, INFO, WARN, ERROR, FATAL]
out_level: "DEBUG"
# 保存日志级别
save_level: "DEBUG"
#识别数据来源参数配置
data_source:
#url: "rtsp://admin:sgt12345@10.27.119.13:554/h264/ch1/main/av_stream"
url: "./vedio/buertai2.mp4"
# 跳帧数
skip_interval: 3
# 识别目标
target: "NUM"
# 行驶方向 0-自动识别 1-向左 2-向右 (与“首位信息”成对存在,形成例如向左就编号在前,向右就属性在前的对应)
direction: 0
# 0-向左编号在前 1-向左属性在前 (向右行驶的情况2-向右编号在前 3-向右属性在前)
left_first: 0
# (向左行驶的情况0-向左编号在前 1-向左属性在前) 2-向右编号在前 3-向右属性在前
right_first: 3
# (ltx,lty,rbx,rby)
identify_areas: "120, 0, 1800, 1080"
# 大框的最小高度(为屏蔽远股道识别到的信息)
classid_minheight: "1:90, 2:120, 3:120, 9:240, 10:240, 18:120"
# 识别参数
identify:
# 硬件解码
hardware_decode: true
# 运行方式
run_mode: "always" #[always; command]
# 是否开启动态检测
need_move_detect_flag: true
# 识别方向 [LEFT,RIGHT,ALL]
identify_direction: "LEFT"
# 大框帧跨度(比一个大框从出现到消失的跨度稍大一点, 跟跳帧有关系)
partition_frame_span: 20
# 大框帧跨度的位置像素差异
split_frame_span_px: 200
# 每帧大框位置差异最小值 (持续小于此值,则可能停车)
chkstop_px: 15
# 持续X次续位置差异小于chkstop_px则判断为停车。
chkstop_count: 10
# 过滤最小大框高度(不需要的话就写个很小的值)
num_frame_height: 150
pro_frame_height: 120
# 过滤最大框宽度(不需要的话就写个很大的值)
space_frame_width: 500
# 是否识别车头
train_heard_detect: true
# 选优 0-频率优先 1-长度优先
select_best_mode: 0
# 保存图片质量1~100 越高越清晰)
save_pic_quality: 50
#是否实时推流-用于直播
#gc_push_actual_flag: false
# 模型参数
model:
# 来车检测
MoveEngine:
path: "./model/step0/step0.engine"
model_info_path: "./model/step0/move_modelinfo.txt"
score_threshold: 0.9
nms_threshold: 0.3
# 关键区域识别
TrainStepOneEngine:
path: "./model/step1/step1.engine"
model_info_path: "./model/step1/train_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 字符识别
TrainStepTwoEngine:
path: "./model/step2/step2.engine"
model_info_path: "./model/step2/train_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# 定检期关键区域识别
ChkDateStepOneEngine:
path: "./model/chkDate_step1/step1.engine"
model_info_path: "./model/chkDate_step1/chkdate_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 定检期字符识别
ChkDateStepTwoEngine:
path: "./model/chkDate_step2/step2.engine"
model_info_path: "./model/chkDate_step2/chkdate_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# 集装箱关键区域识别
StepOneContainerEngine:
path: "./model/container_step1/con1.engine"
model_info_path: "./model/container_step1/container_step1_modelinfo.txt"
score_threshold: 0.6
nms_threshold: 0.3
# 集装箱字符识别
StepTwoContainerEngine:
path: "./model/container_step2/con2.engine"
model_info_path: "./model/container_step2/container_step2_modelinfo.txt"
score_threshold: 0.7
nms_threshold: 0.3
# http 接口
http_client:
# 服务器IP
http_ip: 192.168.2.108
# 通讯端口
http_port: 20004
# 获取接口授权地址
token_path: "/api/blade-auth/oauth/token"
# 识别结果上传地址
up_result_path: "/api/train-carriage/identification/rfid-save"
# 设备状态上传地址
device_status_url: "/api/blade-train/deviceInfo/save"
# 接口用户名
username: "guest_01"
# 接口密码
password: "d55b0f642e817eea24725d2f2a31dd08"
# 上传图片的地址
image_srv: "http://192.168.0.121:9010/"
# websocket_server 的服务端参数
wsocket_server:
port: 7071
max_queue_len: 10
#sftp用户名、密码、地址
ftp:
type: "ftp" #可选 ftp 或 sftp
ip: "192.168.2.138"
port: 21 # ftp默认21 sftp默认22
username: "nvidia"
password: "nvidia"
image_path: ""
quit_time: 10 #无上传任务延迟XXX秒断开FTP连接
gc_space_minrbx_imgpercent: 0 #间隔框最低点不应小于画面某个高度值(该值为画面百分比) [主要为屏蔽远股道间隔框若不需要屏蔽则配置为0]