import sys import argparse import os import struct import torch from utils.torch_utils import select_device def parse_args(): parser = argparse.ArgumentParser(description='Convert .pt file to .wts') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)') parser.add_argument('-o', '--output', help='Output (.wts) file path (optional)') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid input file') if not args.output: args.output = os.path.splitext(args.weights)[0] + '.wts' elif os.path.isdir(args.output): args.output = os.path.join( args.output, os.path.splitext(os.path.basename(args.weights))[0] + '.wts') return args.weights, args.output pt_file, wts_file = parse_args() # Initialize device = select_device('cpu') # Load model model = torch.load(pt_file, map_location=device) # load to FP32 model = model['ema' if model.get('ema') else 'model'].float() # update anchor_grid info anchor_grid = model.model[-1].anchors * model.model[-1].stride[...,None,None] # model.model[-1].anchor_grid = anchor_grid delattr(model.model[-1], 'anchor_grid') # model.model[-1] is detect layer model.model[-1].register_buffer("anchor_grid",anchor_grid) #The parameters are saved in the OrderDict through the "register_buffer" method, and then saved to the weight. model.to(device).eval() with open(wts_file, 'w') as f: f.write('{}\n'.format(len(model.state_dict().keys()))) for k, v in model.state_dict().items(): vr = v.reshape(-1).cpu().numpy() f.write('{} {} '.format(k, len(vr))) for vv in vr: f.write(' ') f.write(struct.pack('>f' ,float(vv)).hex()) f.write('\n')