#include #include #include #include "cuda_utils.h" #include "logging.h" #include "yolov5_common.h" #include "utils.h" #include "calibrator.h" #include "preprocess.h" /* *相关宏定义: *量化模式:TensorRT仅支持INT8,FP16,FP32三种量化,INT8量化较为复杂 *GPU ID:默认是0 *NMS阈值 *置信度阈值 *BATCH_SIZE *图像最大尺寸阈值 */ #define USE_FP32 // set USE_INT8 or USE_FP16 or USE_FP32 #define DEVICE 0 // GPU id #define NMS_THRESH 0.4 #define CONF_THRESH 0.5 #define BATCH_SIZE 1 #define MAX_IMAGE_INPUT_SIZE_THRESH 3000 * 3000 // ensure it exceed the maximum size in the input images ! //输入高度,输入宽度,类别,输出大小,在yololayer.h里面可以配置,默认宽高都为640,类别为80 // stuff we know about the network and the input/output blobs static const int INPUT_H = Yolo::INPUT_H; static const int INPUT_W = Yolo::INPUT_W; static const int CLASS_NUM = Yolo::CLASS_NUM; static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1; // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1 const char* INPUT_BLOB_NAME = "data"; //指定输入输出blob,和资源文件夹 const char* OUTPUT_BLOB_NAME = "prob"; static Logger gLogger; //tensorrt logger为TensorRT API中各方法的必须参数 //要想用TensorRT执行推理,首先需要ICudaEngine对象创建引擎engine,然后利用IExecutionContext接口执行推理 //获取宽度 static int get_width(int x, float gw, int divisor = 8) { return int(ceil((x * gw) / divisor)) * divisor; } //获取深度 static int get_depth(int x, float gd) { if (x == 1) return 1; int r = round(x * gd); if (x * gd - int(x * gd) == 0.5 && (int(x * gd) % 2) == 0) { --r; } return std::max(r, 1); } //构建普通引擎(例:yolov5s,yolov5m...) ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) { INetworkDefinition* network = builder->createNetworkV2(0U); // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); assert(data); std::map weightMap = loadWeights(wts_name); /* ------ yolov5 backbone------ */ auto conv0 = convBlock(network, weightMap, *data, get_width(64, gw), 6, 2, 1, "model.0"); assert(conv0); auto conv1 = convBlock(network, weightMap, *conv0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1"); auto bottleneck_CSP2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2"); auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3"); auto bottleneck_csp4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(6, gd), true, 1, 0.5, "model.4"); auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5"); auto bottleneck_csp6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6"); auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.7"); auto bottleneck_csp8 = C3(network, weightMap, *conv7->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), true, 1, 0.5, "model.8"); auto spp9 = SPPF(network, weightMap, *bottleneck_csp8->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, "model.9"); /* ------ yolov5 head ------ */ auto conv10 = convBlock(network, weightMap, *spp9->getOutput(0), get_width(512, gw), 1, 1, 1, "model.10"); auto upsample11 = network->addResize(*conv10->getOutput(0)); assert(upsample11); upsample11->setResizeMode(ResizeMode::kNEAREST); upsample11->setOutputDimensions(bottleneck_csp6->getOutput(0)->getDimensions()); ITensor* inputTensors12[] = { upsample11->getOutput(0), bottleneck_csp6->getOutput(0) }; auto cat12 = network->addConcatenation(inputTensors12, 2); auto bottleneck_csp13 = C3(network, weightMap, *cat12->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.13"); auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), get_width(256, gw), 1, 1, 1, "model.14"); auto upsample15 = network->addResize(*conv14->getOutput(0)); assert(upsample15); upsample15->setResizeMode(ResizeMode::kNEAREST); upsample15->setOutputDimensions(bottleneck_csp4->getOutput(0)->getDimensions()); ITensor* inputTensors16[] = { upsample15->getOutput(0), bottleneck_csp4->getOutput(0) }; auto cat16 = network->addConcatenation(inputTensors16, 2); auto bottleneck_csp17 = C3(network, weightMap, *cat16->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.17"); /* ------ detect ------ */ IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]); auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), get_width(256, gw), 3, 2, 1, "model.18"); ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) }; auto cat19 = network->addConcatenation(inputTensors19, 2); auto bottleneck_csp20 = C3(network, weightMap, *cat19->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.20"); IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]); auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), get_width(512, gw), 3, 2, 1, "model.21"); ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) }; auto cat22 = network->addConcatenation(inputTensors22, 2); auto bottleneck_csp23 = C3(network, weightMap, *cat22->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.23"); IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]); auto yolo = addYoLoLayer(network, weightMap, "model.24", std::vector{det0, det1, det2}); yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME); network->markOutput(*yolo->getOutput(0)); // Build engine builder->setMaxBatchSize(maxBatchSize); config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB #if defined(USE_FP16) config->setFlag(BuilderFlag::kFP16); #elif defined(USE_INT8) std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl; assert(builder->platformHasFastInt8()); config->setFlag(BuilderFlag::kINT8); Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME); config->setInt8Calibrator(calibrator); #endif std::cout << "Building engine, please wait for a while..." << std::endl; ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); std::cout << "Build engine successfully!" << std::endl; // Don't need the network any more network->destroy(); // Release host memory for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return engine; } //构建p6引擎(例:yolov5s6,yolov5m6...) ICudaEngine* build_engine_p6(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) { INetworkDefinition* network = builder->createNetworkV2(0U); // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); assert(data); std::map weightMap = loadWeights(wts_name); /* ------ yolov5 backbone------ */ auto conv0 = convBlock(network, weightMap, *data, get_width(64, gw), 6, 2, 1, "model.0"); auto conv1 = convBlock(network, weightMap, *conv0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1"); auto c3_2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2"); auto conv3 = convBlock(network, weightMap, *c3_2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3"); auto c3_4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(6, gd), true, 1, 0.5, "model.4"); auto conv5 = convBlock(network, weightMap, *c3_4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5"); auto c3_6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6"); auto conv7 = convBlock(network, weightMap, *c3_6->getOutput(0), get_width(768, gw), 3, 2, 1, "model.7"); auto c3_8 = C3(network, weightMap, *conv7->getOutput(0), get_width(768, gw), get_width(768, gw), get_depth(3, gd), true, 1, 0.5, "model.8"); auto conv9 = convBlock(network, weightMap, *c3_8->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.9"); auto c3_10 = C3(network, weightMap, *conv9->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), true, 1, 0.5, "model.10"); auto sppf11 = SPPF(network, weightMap, *c3_10->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, "model.11"); /* ------ yolov5 head ------ */ auto conv12 = convBlock(network, weightMap, *sppf11->getOutput(0), get_width(768, gw), 1, 1, 1, "model.12"); auto upsample13 = network->addResize(*conv12->getOutput(0)); assert(upsample13); upsample13->setResizeMode(ResizeMode::kNEAREST); upsample13->setOutputDimensions(c3_8->getOutput(0)->getDimensions()); ITensor* inputTensors14[] = { upsample13->getOutput(0), c3_8->getOutput(0) }; auto cat14 = network->addConcatenation(inputTensors14, 2); auto c3_15 = C3(network, weightMap, *cat14->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.15"); auto conv16 = convBlock(network, weightMap, *c3_15->getOutput(0), get_width(512, gw), 1, 1, 1, "model.16"); auto upsample17 = network->addResize(*conv16->getOutput(0)); assert(upsample17); upsample17->setResizeMode(ResizeMode::kNEAREST); upsample17->setOutputDimensions(c3_6->getOutput(0)->getDimensions()); ITensor* inputTensors18[] = { upsample17->getOutput(0), c3_6->getOutput(0) }; auto cat18 = network->addConcatenation(inputTensors18, 2); auto c3_19 = C3(network, weightMap, *cat18->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.19"); auto conv20 = convBlock(network, weightMap, *c3_19->getOutput(0), get_width(256, gw), 1, 1, 1, "model.20"); auto upsample21 = network->addResize(*conv20->getOutput(0)); assert(upsample21); upsample21->setResizeMode(ResizeMode::kNEAREST); upsample21->setOutputDimensions(c3_4->getOutput(0)->getDimensions()); ITensor* inputTensors21[] = { upsample21->getOutput(0), c3_4->getOutput(0) }; auto cat22 = network->addConcatenation(inputTensors21, 2); auto c3_23 = C3(network, weightMap, *cat22->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.23"); auto conv24 = convBlock(network, weightMap, *c3_23->getOutput(0), get_width(256, gw), 3, 2, 1, "model.24"); ITensor* inputTensors25[] = { conv24->getOutput(0), conv20->getOutput(0) }; auto cat25 = network->addConcatenation(inputTensors25, 2); auto c3_26 = C3(network, weightMap, *cat25->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.26"); auto conv27 = convBlock(network, weightMap, *c3_26->getOutput(0), get_width(512, gw), 3, 2, 1, "model.27"); ITensor* inputTensors28[] = { conv27->getOutput(0), conv16->getOutput(0) }; auto cat28 = network->addConcatenation(inputTensors28, 2); auto c3_29 = C3(network, weightMap, *cat28->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.29"); auto conv30 = convBlock(network, weightMap, *c3_29->getOutput(0), get_width(768, gw), 3, 2, 1, "model.30"); ITensor* inputTensors31[] = { conv30->getOutput(0), conv12->getOutput(0) }; auto cat31 = network->addConcatenation(inputTensors31, 2); auto c3_32 = C3(network, weightMap, *cat31->getOutput(0), get_width(2048, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.32"); /* ------ detect ------ */ IConvolutionLayer* det0 = network->addConvolutionNd(*c3_23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.0.weight"], weightMap["model.33.m.0.bias"]); IConvolutionLayer* det1 = network->addConvolutionNd(*c3_26->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.1.weight"], weightMap["model.33.m.1.bias"]); IConvolutionLayer* det2 = network->addConvolutionNd(*c3_29->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.2.weight"], weightMap["model.33.m.2.bias"]); IConvolutionLayer* det3 = network->addConvolutionNd(*c3_32->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.3.weight"], weightMap["model.33.m.3.bias"]); auto yolo = addYoLoLayer(network, weightMap, "model.33", std::vector{det0, det1, det2, det3}); yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME); network->markOutput(*yolo->getOutput(0)); // Build engine builder->setMaxBatchSize(maxBatchSize); config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB #if defined(USE_FP16) config->setFlag(BuilderFlag::kFP16); #elif defined(USE_INT8) std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl; assert(builder->platformHasFastInt8()); config->setFlag(BuilderFlag::kINT8); Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME); config->setInt8Calibrator(calibrator); #endif std::cout << "Building engine, please wait for a while..." << std::endl; ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); std::cout << "Build engine successfully!" << std::endl; // Don't need the network any more network->destroy(); // Release host memory for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return engine; } //转换模型 void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, bool& is_p6, float& gd, float& gw, std::string& wts_name) { // Create builder IBuilder* builder = createInferBuilder(gLogger); //创建builder(要传入gLogger) IBuilderConfig* config = builder->createBuilderConfig(); //创建builderconfig // 创建模型来填充网络,然后设置输出并创建一个引擎 // Create model to populate the network, then set the outputs and create an engine ICudaEngine *engine = nullptr; if (is_p6) { engine = build_engine_p6(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name); } else { engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name); } assert(engine != nullptr); // Serialize the engine //序列化引擎生成模型流 (*modelStream) = engine->serialize(); // Close everything down //释放相关资源 engine->destroy(); builder->destroy(); config->destroy(); } //执行推理 void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* output, int batchSize) { // infer on the batch asynchronously, and DMA output back to host context.enqueue(batchSize, buffers, stream, nullptr); //执行异步推理(调用context->enqueueV2即可执行异步推理,如果用同步推理的话,可以调用context->executeV2) CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); //把推理后的结果从GPU上拷贝到CPU上 cudaStreamSynchronize(stream); //同步之前创建的cuda流,原因很简单,直接使用的context->enqueueV2函数是异步推理,因此需要把cuda流同步一下 } //解析命令参数 bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, bool& is_p6, float& gd, float& gw, std::string& img_dir) { if (argc < 4) return false; if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) { wts = std::string(argv[2]); engine = std::string(argv[3]); auto net = std::string(argv[4]); if (net[0] == 'n') { //gw width_multiple系数 gd depth_multiple系数 depth_multiple控制网络的深度,width_multiple控制网络的宽度。 gd = 0.33; gw = 0.25; } else if (net[0] == 's') { gd = 0.33; gw = 0.50; } else if (net[0] == 'm') { gd = 0.67; gw = 0.75; } else if (net[0] == 'l') { gd = 1.0; gw = 1.0; } else if (net[0] == 'x') { gd = 1.33; gw = 1.25; } else if (net[0] == 'c' && argc == 7) { gd = atof(argv[5]); gw = atof(argv[6]); } else { return false; } if (net.size() == 2 && net[1] == '6') { is_p6 = true; } } else if (std::string(argv[1]) == "-d" && argc == 4) { engine = std::string(argv[2]); img_dir = std::string(argv[3]); } else { return false; } return true; } int main(int argc, char** argv) { cudaSetDevice(DEVICE); //设置GPU std::string wts_name = ""; //wts及engine模型名称 std::string engine_name = ""; bool is_p6 = false; //默认不是P6模型 float gd = 0.0f, gw = 0.0f; std::string img_dir; //输入图像的路径 //解析传入命令 if (!parse_args(argc, argv, wts_name, engine_name, is_p6, gd, gw, img_dir)) { std::cerr << "arguments not right!" << std::endl; std::cerr << "./yolov5 -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file" << std::endl; std::cerr << "./yolov5 -d [.engine] ../../samples // deserialize plan file and run inference" << std::endl; return -1; } // create a model using the API directly and serialize it to a stream //直接使用API创建一个模型,并将其序列化为流 if (!wts_name.empty()) { IHostMemory* modelStream{ nullptr }; APIToModel(BATCH_SIZE, &modelStream, is_p6, gd, gw, wts_name); assert(modelStream != nullptr); std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "could not open plan output file" << std::endl; return -1; } p.write(reinterpret_cast(modelStream->data()), modelStream->size()); modelStream->destroy(); return 0; } // deserialize the .engine and run inference //反序列化模型并运行推理 std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { std::cerr << "read " << engine_name << " error!" << std::endl; return -1; } //创建tensorRT流对象trtModelStream,这个就跟文件流中的ifstream类似的 //trtModelStream是一块内存区域,用于保存序列化的plan文件 char *trtModelStream = nullptr; size_t size = 0; file.seekg(0, file.end); //将指针移动至距离文件末尾0处的位置 size = file.tellg(); //获得当前字符的位置 file.seekg(0, file.beg); //将指针移动至距离文件开头0处的位置 trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); //将序列化engine模型(数据及数据大小)读入trtModelStream file.close(); std::vector file_names; //读取输入的图像数据 if (read_files_in_dir(img_dir.c_str(), file_names) < 0) { std::cerr << "read_files_in_dir failed." << std::endl; return -1; } static float prob[BATCH_SIZE * OUTPUT_SIZE]; //输出的shape大小 IRuntime* runtime = createInferRuntime(gLogger); //创建运行时环境IRuntime对象,传入gLogger用于打印信息 assert(runtime != nullptr); ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); //反序列化引擎engine(根据trtModelStream反序列化) assert(engine != nullptr); IExecutionContext* context = engine->createExecutionContext(); //创建上下文环境,主要用于inference函数中启动cuda核 assert(context != nullptr); delete[] trtModelStream; //析构trtModelStream assert(engine->getNbBindings() == 2); float* buffers[2]; //为了绑定缓冲区,我们需要知道输入和输出张量的名称。 //注意索引保证小于IEngine:: gettnbbindings () //用TensorRT去推理模型,就必须要传入一个存有输入和输出数据(的指针)的缓冲区, //因此我们需要用engine->getBindingIndex这个函数去拿到输入和输出在网络中的位置。 //具体的INPUT_NAME和OUTPUT_NAME是自己在生成序列化模型的时候设置的 //如果是像类似TensorRTx那样的工程,从头到尾用TensorRT的API去实现一个模型 //那么INPUT_NAME和OUTPUT_NAME就是在设置输入层和输出层自己设置的name。 // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device //在设备端(GPU)申请内存 CUDA_CHECK(cudaMalloc((void**)&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); // Create stream //创建一个cuda流,推理的时候需要用到 cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); uint8_t* img_host = nullptr; uint8_t* img_device = nullptr; // prepare input data cache in pinned memory // 在HOST侧申请预处理数据缓存 CUDA_CHECK(cudaMallocHost((void**)&img_host, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); // prepare input data cache in device memory // 在Device侧申请预处理数据缓存 CUDA_CHECK(cudaMalloc((void**)&img_device, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); //输入图像预处理 int fcount = 0; std::vector imgs_buffer(BATCH_SIZE); for (int f = 0; f < (int)file_names.size(); f++) { fcount++; if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue; //auto start = std::chrono::system_clock::now(); float* buffer_idx = (float*)buffers[inputIndex]; for (int b = 0; b < fcount; b++) { cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]); if (img.empty()) continue; imgs_buffer[b] = img; size_t size_image = img.cols * img.rows * 3; size_t size_image_dst = INPUT_H * INPUT_W * 3; //copy data to pinned memory memcpy(img_host,img.data,size_image); //拷贝预处理数据到HOST侧 //copy data to device memory CUDA_CHECK(cudaMemcpyAsync(img_device,img_host,size_image,cudaMemcpyHostToDevice,stream)); //拷贝预处理数据到Device侧 preprocess_kernel_img(img_device, img.cols, img.rows, buffer_idx, INPUT_W, INPUT_H, stream); buffer_idx += size_image_dst; } // Run inference // 执行推理 auto start = std::chrono::system_clock::now(); //计时开始 doInference(*context, stream, (void**)buffers, prob, BATCH_SIZE); //context为推理的上下文环境,stream为注册流(用于异步推理时进行同步),buffers为传入的图像数据,prob为推理的结果 auto end = std::chrono::system_clock::now(); std::cout << "inference time: " << std::chrono::duration_cast(end - start).count() << "ms" << std::endl; std::vector> batch_res(fcount); //后处理 for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); //进行非极大值抑制后res中保留着结果 } //根据非极大值抑制的结果标注相关信息(画框,文字信息等) for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; cv::Mat img = imgs_buffer[b]; for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(img, res[j].bbox); cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); } cv::imwrite("_" + file_names[f - fcount + 1 + b], img); } fcount = 0; } // Release stream and buffers cudaStreamDestroy(stream); CUDA_CHECK(cudaFree(img_device)); //释放cuda流 CUDA_CHECK(cudaFreeHost(img_host)); //释放HOST端内存 CUDA_CHECK(cudaFree(buffers[inputIndex])); //释放设备端内存 CUDA_CHECK(cudaFree(buffers[outputIndex])); // Destroy the engine context->destroy(); //析构engine引擎资源 engine->destroy(); runtime->destroy(); // Print histogram of the output distribution //std::cout << "\nOutput:\n\n"; //for (unsigned int i = 0; i < OUTPUT_SIZE; i++) //{ // std::cout << prob[i] << ", "; // if (i % 10 == 0) std::cout << std::endl; //} //std::cout << std::endl; return 0; }